Cyclisation of Phenacylisoquinolinium Bromide and Phenacylquinolinium Bromide with Ammonium Acetate in Acetic Acid: a Reinvestigation

By Ronald F. Cookson,* David P. Nowotnik, and Robert T. Parfitt (Nicholas Research Laboratories, 225, Bath Road, Slough, Berkshire SLI 4AU)

Summary Treatment of the phenacyl quaternary salts of isoquinoline and quinoline with ammonium acetate in
acetic acid gave the products (5) and (7) respectively, and not those previously reported.

Kroemnke and $Z_{\text {echer }}{ }^{1}$ reported that refluxing the quaternary salts (1) and (2) in AcOH with an excess of $\mathrm{NH}_{4} \mathrm{OAc}$ gave the dihydroimidazo-compounds (3) and (4) respectively. Re-examination of these reactions has shown that the formulation of these products is incorrect.

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the product from phenacylisoquinolinium bromide (1) displays two 2 H triplets ($\delta 4 \cdot 15$ and $5 \cdot 04 ; J 2 \mathrm{~Hz}$) in a pattern characteristic of 1,4 -coupling. ${ }^{2}$ A singlet ($1 \mathrm{H}, \delta 7 \cdot 15$) in the spectrum is lost on bromination. These observations indicate that the product is the imidazo $[1,2-b]$ isoquinoline (5), formed by cyclisation at the 3 -, rather than the 1 -position of isoquinoline. Moreover, they account for the failure ${ }^{1}$ of attempts to dehydrogenate the putative 2,3 -dihydro-compound (3) and to dehydrobrominate its supposed 2 -bromo-derivative, which must now be reformulated as compound (6). The ${ }^{13} \mathrm{C}$ n.m.r. spectrum of compound (5) is consistent with its assigned structure.

Phenacylquinolinium bromide (2) cyclises to give the 4,5-dihydro-compound (7) rather than the previously assumed 1,2 -dihydro-derivative (4). Thus the ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the product exhibits a singlet $(1 \mathrm{H}$, $\delta 7 \cdot 62$) which is lost on bromination, and a broad apparent singlet ($4 \mathrm{H}, \delta 3.07$) which is resolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ into a symmetrical $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ multiplet.

We thank Dr. A. C. Kende for the determination of the ${ }^{13} \mathrm{C}$ n.m.r. spectrum.

Added in proof: Kroehnke and his co-workers ${ }^{3}$ independently agree with our formulation for compound (7).

(1)

(3)

(5) ; $R=H$
(6); $R=B r$
${ }^{1}$ F. Kroehnke and W. Zecher, Chem. Ber., 1962, 95, 1128.
${ }^{2}$ See for example A. M. Abd-Elfattah, S. M. Hussain, and M. I. Ali, Tetrahedron, 1974, 30, 987.
${ }^{3} \mathrm{~F}$. Kroehnke, personal communication.

