Dihydro-platinum(11) and Related Complexes

By BERNARD L. SHAW* and MICHAEL F. UTTLEY (School of Chemistry, The University, Leeds LS2 9JT)

Summary Stable platinum(II) dihydrides trans-[PtH₂L¹₂) and monohydrides [PtH(P—C)L] (L = a bulky tertiary phosphine, P—C = a metallated tertiary phosphine) are described; a previous claim to have made such dihydrides is shown to be wrong.

ALTHOUGH many monohydride complexes of the type trans-[PtHXL₂] (L = tertiary phosphine or tertiary arsine; X = anionic ligand such as Cl, NO₃ etc.) are known attempts at further reduction to give dihydrides [PtH₂L₂] lead to decomposition when, for example, L = PEt₃.AsEt₃, PMe₂-Ph, or PPh₃. We have now prepared a series of white crystalline dihydrides, trans-[PtH₂L₂], with bulky tertiary phosphine ligands, L, simply by reducing either cis-[PtCl₂L₂] or trans-[PtHClL₂] with a large excess of NaBH₄

in EtOH. Dihydrides with $L = PBu^{t}Me_{2}$, $PBu^{t}Et_{2}$, $PBu^{t}Bu^{n}$, $PBu^{t}(CH_{2}Ph)_{2}$, $PBu^{t}_{2}Pr^{n}$, $PBu^{t}_{2}CH_{2}Ph$, and $P(cyclohexyl)_{3}$ have been prepared, the more bulky ligands

giving the more stable compounds; e.g. $[PtH_2(PBut_2CH_2Ph)_2]$ is stable for several weeks in air at room temperature whilst $[PtH_2(PBut_{2}t_2)_2]$ darkens considerably after 1 day at room temperature in air but appears to be indefinitely

stable at -30 °C. These compounds are characterized by a very intense i.r. absorption band within the range 1710–1750 cm⁻¹ due to v(Pt-H) and a ¹H n.m.r. resonance at very low field for a transition-metal hydride, *i.e.* within the range τ 12–13·15 (in benzene solution) and ²J(P-H) 16-18 Hz; ¹J(Pt-H) 780-802 Hz. In particular trans- $[PtH_2{P(cyclohexyl)_3}_2]^{\dagger}$ has $\nu(Pt)-H$) 1710 cm⁻¹ (Nujol), $\tau_{\rm H}$ 13·15, $^2J({\rm P-H})$ 17 Hz, $^1J({\rm Pt-H})$ 792 Hz (in benzene in which it is readily soluble). Previously it has been reported that the material 'X' which gradually precipitates over a period of 1 week from an ether solution containing [Pt-(acac)₂], P(cyclohexyl)₃, and Et₃Al is [PtH₂{P(cyclo $hexyl_{3}_{2}$]. This could not be the structure of the material 'X' which had a value for v(Pt-H) of 1910 cm⁻¹, very high for two mutually trans hydride ligands,²⁻⁴ and was reported to be too insoluble for ¹H n.m.r. studies but was apparently monomeric in dilute solution in benzene. It reacted with CCl_4 to give $CHCl_3$ and trans-[PtHCl{P(cyclohexyl)_3}_2]. We have prepared this hydrochloride complex by treating trans-[PtHCl(PEt₃)₂] with tricyclohexylphosphine and find the same properties as those reported previously.¹ We find that trans-[PtHCl{P(cyclohexyl)₃}] is smoothly converted into $trans-[PtH_2{P(cyclohexyl)_3}]$ by $NaBH_4$ in ethanol. Two other hydrides analogous to 'X' have also been described and were similarly prepared from [Pt(acac),], Et_3Al , and $PEt(cyclohexyl)_2$ or $PPr^n(cyclohexyl)_2$, but they were isolated only as viscous oils.¹ These two hydrides must also have been incorrectly formulated as trans-[PtH2L2] since they had large values for $\nu({\rm Pt-H})$ (ca. 1910 cm^-1) and

the ¹H n.m.r. data, $\tau_{\rm H}$ 15.6, ² $J(\rm P-H)$ 18 Hz, ¹ $J(\rm Pt-H)$ 596 Hz for L = PEt(cyclohexyl)_2 and $\tau_{\rm H}$ 16.9, $^2J({\rm P-H})$ 20 Hz, ${}^{1}J(Pt-H 610 \text{ Hz for } L = PPr^{n}(cyclohexyl)_{2}$ are quite different from the narrow ranges of values found for our extensive series of dihydrides. Since these three hydrides have high values for v(Pt-H) and very low values for ${}^{1}J(Pt-H)$ we tentatively suggest that they are hydrides of platinum(IV) either of type trans- $[PtH_4L_2]$ or containing metallated tertiary phosphine ligands, e.g. trans-

 $[PtH_{2}{P(C_{6}H_{10})(C_{6}H_{11})_{2}}_{2}].$

We have also made stable crystalline platinum(II) hydrides [PtX(P-C)L] (1; X = H) containing metallated tertiary phosphine ligands (P-C) with $L^2 = PBu^t(o-tolyl)_2$, PBut₂(o-tolyl), or PBut(CH₂Ph)₂ by NaBH₄ reduction of the corresponding chlorides (1; X = Cl).^{5,6} These have values of $\nu(Pt-H)$ of 1980–1988 cm⁻¹, $\tau_{\rm H}$ 14·3–16·3, ²/(P–H) ca. 15 Hz, and ¹/(Pt-H) 624-717 Hz. These spectroscopic data are similar to those previously ascribed to the incorrectly formulated dihydrides such as 'X' discussed above. $trans-[PtH_2{P(cyclohexyl)_3}_2]$ on controlled pyrolysis gave no indication of producing any other hydrides or compounds containing metallated P(cyclohexyl)₃ ligands.

We thank the S.R.C. for financial support and Johnson Matthey Ltd., and Engelhard Industries Ltd. for the generous loan of platinum salts.

(Received, 4th September 1974; Com. 1131.)

S. Otsuka and Y. Yoshida reported verbally at the XVI I.C.C.C., Dublin, August 1974 that they had prepared authentic trans- $[PtH_2{P(cyclohexyl)_3}_2]$ and gave properties very similar to ours.

- ¹ K. Kudo, M. Hidai and Y. Uchida, J. Organometallic Chem. 1973, 56, 417
- ² D. M. Adams, 'Metal-Ligand and Related Vibrations,' Arnold, London, 1967.
- ⁸ E. L. Muetterties, 'Transition Metal Hydrides,' Dekker, New York, 1971.
- ⁴ J. C. Green and M. L. H. Green, 'Transition Metal Hydrides' in 'Comprehensive Inorganic Chemistry,' Vol. 4, p. 355, Pergamon.
- ⁵ A. J. Cheney and B. L. Shaw, J.C.S. Dalton, 1972, 754.
 ⁶ B. L. Shaw and M. M. Truelock, unpublished results.