Preparation of Alkoxy and Other Sulphonium Salts *via* an Intermediate Adduct Between Methyl Chlorosulphinate and Dimethyl Sulphoxide

By Yoshinori Hara and Minoru Matsuda*

(Chemical Research Institute of Non-aqueous Solutions, Tohoku University, Sendai, 980 Japan)

Summary A simple and efficient synthetic approach to alkoxy- and other sulphonium salts is described.

RELATIVELY few studies have been performed on syntheses of alkoxysulphonium salts.¹ In general, they are prepared by alkylation of the corresponding sulphoxides with trialkyloxonium salts,² or by routes involving oxonium ions or positive halogen compounds.^{1b,3} We now report a simple and widely applicable method for the preparation of alkoxy and other sulphonium salts *via* an intermediate adduct between methyl chlorosulphinate and dimethyl sulphoxide.

 Me_2SO (1 mol. equiv.) was added to a solution of the alkyl chlorosulphinate in CH_2Cl_2 at -78° . After 1 h, addition of $SbCl_5$ produced immediately the corresponding

† Satisfactory elemental analyses have been obtained for all compounds.

alkoxydimethylsulphonium hexachloroantimonate in good yield (see Table 1).[†] These reactions seem to be essentially identical with the decarboxylation of alkyl chloroformates in Me₂SO yielding the alkoxysulphonium salts.^{4,5} However, it is interesting that at room temperature the reaction of MeOS(:O)Cl with Me₂SO gave compound (1) as the main product (Table 1).

$$\begin{array}{cccc} & O & & Me \\ \parallel & \parallel & CH_2Cl_2, room temp. & & | \\ MeOSCl + Me-S-Me & & & \\ & & & \\ SbCl_5 & & & | \\ & & Me \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

TABLE 1. Products from the reaction of alkyl chlorosulphinates with sulphoxides at -78° and at room temperature.

Chlorosulphinate R ¹ OS(:0)Cl R ¹	Sulphoxide R ² 2SO R ²	Product R ^g ₂ (R ³)S+SbCl ₆ -			
		\mathbf{R}^2	R ³	M.p./°C	Yield (%)
Me^{a}	Me	Me	MeO	174	86
Eta	**	"	EtO	108 ³ b	84
Pria	**	**	PriO	132-133 ^{8b}	86
Me^{a}	\mathbf{Ph}	\mathbf{Ph}	MeO	165 - 166	58
Meb	Me	Me	MeSCH.	133-135 ^{8b}	27-28
Etb	>>	**	"	»	22 - 26

^a At -78° for 1 h. ^b At room temp. for 5 h.

EtOS(: 0)Cl also gave compound (1) at room temperature. Moreover, the n.m.r. spectrum of the product prepared from the reaction of MeOS(:O)Cl with (CD₃)₂SO showed no protons which could be ascribed to MeOS(:O)Cl indicating that compound (1) is formed from 2 Me₂SO units. The reaction of a mixture of MeOS(:O)Cl and Me₂SO in liquid SO₂ at room temperature gave equimolar amounts of HCHO and Me₂(MeSCH₂)S+Cl⁻ (detected by n.m.r. spectrodisulphides and thiols produced mercapto-sulphonium salts. and secondary amines produced amino-sulphonium salt. This method is thus of wide applicability for the preparation of sulphonium salts. The adduct between MeOS(:O)Cl and Me₂SO is presumed to be dimethylchlorosulphonium methylsulphinate (A) from the similarity in reactivity to the stable chlorosulphonium salt prepared by Meerwein et al.3b

TABLE 2. Products from the reaction (1 h) of various substrates and the adduct prepared at -78° from MeOS(: O)Cl and Me₃SO.

Substra			T∕°C	Cl			
					R	M.p./°C	° Yield (%)
					<u> </u>		
Me_2S	••	••	••	-20-0	MeSCH ₂		83
EtOH	••	••	••	78	EtO -		72
Bu ^t OH	••	••	••	0	ButO	156 - 158	46
Me ₂ CO	••	••	••	0	$MeC(:O)CH_2^{b}$	118	40
PhSSPh	••	••	••	0	PhS	145	80
EtSH	••	••	••	0	EtS	141 - 142	77
E+ NH8				-70 to -50	∫MeO	—	15
12021111	••	••	••	-70 10 -00	ζEt₂N	93—95	35

^a 0.5 h reaction. ^b v_{C-0} 1720 cm⁻¹.

scopy) An intermediate adduct formed between MeOS-(: O)Cl and Me₂SO must react further with the Me₂S which is produced from the decomposition of adduct, presumably analogous to Kornblum oxidation.⁴ The adduct obtained by the addition of alkyl chlorosulphinate to Me₂SO at -78° was a colourless viscous oil which dissolved only in polar solvents such as SO_2 and CH_2Cl_2 . We investigated the reaction of the adduct prepared at -78° with various substrates (Table 2); the substrate (1 mol. equiv.) was added to the adduct at -78° , the mixture was stirred at the temperature in Table 2 for 1 h, the mixture was cooled to -78° , and SbCl₅ (1 mol. equiv.) was added. Compound (1) was obtained in high yield using Me₂S as substrate, alcohols gave the corresponding alkoxy sulphonium salts instead of the methoxysulphonium salts described above,

(Received, 3rd September 1974; Com. 1121.)

¹ (a) C. R. Johnson and W. G. Phillips, *J. Org. Chem.*, 1967, **32**, 1926; (b) M. A. Khuddus and D. Swern, *J. Amer. Chem. Soc.*, 1973, **95**, 8393; (c) C. R. Johnson and W. G. Phillips, *ibid.*, 1969, **91**, 682. ² H. Meerwein, E. Battenburg, H. Gold, E. Pfeil, and G. Willfang, *J. prakt. Chem.*, 1939, **154**, 83.

³ (a) K. Tossell, Acta Chem. Scand., 1967, 21, 1; (b) H. Meerwein, K. F. Zenner, and R. Gipp, Annalen, 1965, 688, 67; (c) C. R. Bacon and W. D. Kingsbury, Tetrahedron Letters, 1972, 501.

⁴ D. H. R. Barton, J. B. Ganner, and R. H. Wightman, J. Chem. Soc., 1964, 1855.

⁵ K. Tossell, Tetrahedron Letters, 1966, 4445.