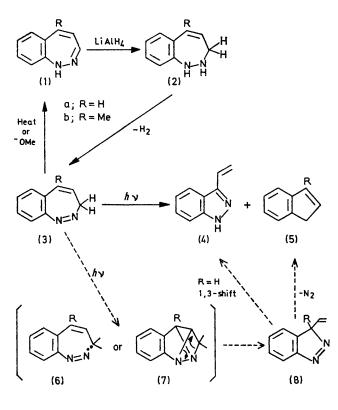
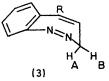
Synthesis and Photochemical Behaviour of 3H-1,2-Benzodiazepines

By Jyoji Kurita and Takashi Tsuchiya*

(School of Pharmaceutical Sciences, Showa University, Shinagawa, Tokyo, Japan)

Summary The previously unknown 3H-1,2-benzodiazepines (3) are prepared from the 1H-isomers (1) in high yields and the energy barriers to ring inversion are estimated from n.m.r. spectral data; irradiation of the diazepines (3) affords 3-vinylindazole and indenes.


RECENTLY we reported¹ the synthesis of 1H-1,2-benzodiazepines (1) and we were interested in the preparation of the tautomeric 3H- and 5H-1,2-benzodiazepines, in connection with studies on 1,2-diazepines^{2,3} and 2,3-benzodiazepines.⁴ We report here the synthesis of the 3H-1,2benzodiazepines (3) and some of their thermal and photochemical reactions.


The benzodiazepines (2), prepared by LiAlH₄ reduction of the benzodiazepines (1), were dehydrogenated with 4-phenyl-1,2,4-triazoline-3,5-dione in dry benzene to give compounds (3) quantitatively:† (3a) b.p. 125—128° at 1 mmHg; δ (CS₂ at 34°) 4.00br (2H, d, 3-H), 5.75 (1H, m, 4-H), 6.72 (1H, d, 5-H), and 7.2—7.8 (4H, m, Ar-H); (3b) b.p. 132—134° at 1 mmHg, δ (CS₂ at 34°) 2.12br (3H, 5-Me), 2.2—5.5br (2H, 3-H), 5.62 (1H, m, 4-H), and 7.2—7.7 (4H, m, Ar-H). The 3H-diazepines (3) were readily tautomerized to the parent 1H-diazepines (1) by treatment with NaOMe in MeOH or heating in CCl₄ at 150° in a sealed tube.

Irradiation (400 W high-pressure Hg lamp; Pyrex) of the diazepine (3a) in CH_2Cl_2 solution gave 3-vinylindazole (4; 90%)[†] and indene (5a; 1-2%). Under similar conditions, 5-methyldiazepine (3b) gave 3-methylindene (5b; ca. 70%) but no indazole derivative. This result indicates that the formation of (4) and (5) may involve proton transfer and

† Satisfactory elemental analyses and mass spectral data were obtained for all new compounds and the indenes (5) were identified by comparison with the authentic samples.

[‡] Compound (4): m.p. 117·5—118·5°, δ (CDCl₂) 5·52 (1H, dd, J 11 and 1·5 Hz), 6·07 (1H, dd, J 16 and 1·5 Hz), 7·06 (1H, dd, J 11 and 16 Hz), 7·0—7·9 (4H, m, Ar-H), and 11·0br (1H, NH).

extrusion of nitrogen of the key intermediates (8), which are formed via the diradical (6) or the tetracyclic intermediates (7), and not tautomerization to the 1*H*- or 5*H*-isomers followed by $(\pi 2_s + \pi 2_s)$ reaction of the azabutadiene units to the tricyclic compounds analogous to that observed for 2,3-benzodiazepines.4

The n.m.r. spectrum of the 3H-benzodiazepines (3) showed a similar temperature dependence to those of 4H-1,2-diazepines,² and 1H- and 5H-2,3-benzodiazepines⁴ consistent with the predictable temperature-dependent inversion of the diazepine ring. The C-3 methylene protons of (3a) show a doublet at δ 4.00 (3b: 3.98) at 100°, which broadens with decreasing temperature and splits into ABX quartets centred on $\delta 2.20$ and 5.80 (**3b**: 2.22 and 5.67) below the coalescence temperature, the change being complete at -80° ; the rest of the spectrum is essentially unchanged. The energies of activation for ring inversion were calculated by spectral analysis (see Table).

TABLE. N.m.r. spectral parameters for C-3 methylene groups in compounds (3) at 90 MHz.ª

	Δv _{AB} b/Hz	J_{AB}/Hz	Tc ^c /°C	$\Delta G^{\ddagger}/\text{kcal}$ mol ⁻¹ at
Compound	(±1)	(± 0.5)	(± 5)	$T_{\mathbf{c}}^{\mathbf{d}}$
(3 a)	324 ·0	12	-20	11.7 ± 0.3
(3b)	310.5	12	25	$13 \cdot 8 \pm 0 \cdot 3$

^a Spectra were measured on a Hitachi R-22 Spectrometer in ^b Chemical shift difference at -80° in Hz. CS₂. ^c Temperature of coalescence. ^d The free energies of activation for ring inversion (ΔG^{\ddagger}) were calculated using the formula: $h_{c} = \pi (\Lambda v_{AB}^{2} +$ $6J_{AB}^{2}^{1}/\sqrt{2}$ (ref. 5).

The energy barriers to ring inversion are lower than those recorded for the monomeric diazepines and 2,3-benzodiazepines. The ΔG^{\ddagger} value for (**3b**) increases most probaby because of increased steric interaction in the transition state between 5-Me and the peri-hydrogen on the aromatic ring.

(Received, 4th September 1974; Com. 1134.)

¹ T. Tsuchiya, J. Kurita, H. Igeta, and V. Snieckus, J.C.S. Chem. Comm., 1974, 640.
² O. Buchardt, C. L. Pedersen, U. Svanholm, A. M. Duffield, and A. T. Balaban, Acta Chem. Scand., 1969, 23, 3125.
³ A. J. Carty, R. F. Hobson, H. A. Patel, and V. Snieckus, J. Amer. Chem. Soc., 1973, 95, 6835.
⁴ A. A. Reid, J. T. Sharp, H. R. Sood, and P. B. Thorogood, J.C.S. Perkin I, 1973, 2543, and refs. cited therein.
⁵ M. Oki, H. Iwamura, and N. Hayakawa, Bull. Chem. Soc. Japan, 1963, 36, 1542; R. J. Kurland, M. B. Rubin, and W. B. Wyse, J. Chem. Phys., 1964, 40, 2426; F. G. Riddell and J. M. Lehn, Chem. Comm., 1966, 375.