Micellar General Base-catalysed Hydrolysis of Diphenyl p-Nitrophenyl Phosphate

By John M. Brown,† Clifford A. Bunton,* and Simon Diaz (Department of Chemistry, University of California, Santa Barbara, California 93106)

Summary Micelles of the functional surfactant (II) derived from histidine catalyse the hydrolysis of diphenyl p-nitrophenyl phosphate; deuterium kinetic solvent isotope effects, $k(\mathbf{H_2O})/k(\mathbf{D_2O})$ ca. 2·5, suggest that (II) acts as a general base rather than as a nucleophilic catalyst.

There are a number of examples of catalysis by micelles or comicelles of nucleophilic surfactants, of reactions of carboxylic esters or related compounds in which the nucleophile, usually an amino-group, attacks the acyl group of the ester, 1,2 and nucleophilic attack has been observed upon the phosphoryl group of phosphate esters by micellized choline derivatives. We report a general base-catalysed hydrolysis of diphenyl p-nitrophenyl phosphate (I) in the presence of the surfactant (II) derived from L-histidine. The surfactant (II) is an effective enantioselective micellar catalyst for the deacylation of optically active p-nitrophenyl esters.

TABLE 1

Deuterium isoto	pe effect and	effect of Brija
$10^4 [(II)]/M$	[Brij]/M	$10^5 k_{\rm U}/{\rm s}^{-1}$
17.8	- • •	112
17.8		44.3b
19.9		113
19.9		44.6b
17.8		89.2c
17.8		32.7b,c
19.9		92.0c
19.9		31.5c,d
3.0	0.01	2.2d
3.0	0.01	2.2e
6.0	0.01	7.9e

 a Polyoxyethylene-20-cetyl ether; reactions were at pH (pD) 8·5 unless specified. b In $\rm D_2O.$ c pH 8·0. d 3 \times 10⁻⁴ M (I). e 6 \times 10⁻⁴ M (I).

The relation between the first-order rate constant, k_{ψ} , and surfactant concentration is typical of micellar catalysis (Figure); with a rate enhancement at pH 8 of 95-fold using

 1.4×10^{-5} M-(I) at 25.0° . The slight dependency of k_{ψ} on pH is probably due to a minor incursion of OH⁻ attack by micelles of (II), cf., ref. 4. This conclusion is supported by

Me[CH₂]₁₁
$$\stackrel{+}{\underset{\wedge}{\bigvee}}$$
 Me₃

O=

MeO₂C

NH

N

NH

NH

NH

(II)

the small effect of relatively high concentration of fluoride ion; the rate is increased ca. four-fold by 0.01 m-fluoride ion in 1.37 mm-(II) at pH 8.0. [Fluoride and hydroxide ion have similar reactivities toward (I) in the presence of inert cationic micelles.⁴]

TABLE 2 Values of pK_a

values of pira	
$10^4 [(II)]/M$	$pK_{\mathbf{a}}$
1.0	7.45
$2 \cdot 0$	7.3 8
5.0	6.70
8.0	6.60

If reaction is carried out using a low concentration of (II) comicellized with the nonionic surfactant Brij, good first-order kinetics are observed from the time of mixing, and the reaction is first order with respect to (II) (Table 1), showing that there is no build up of a reaction intermediate in high concentration, but phosphoryl imidazole could be an intermediate in low concentration; cf., ester hydrolyses catalysed by functional micelles.^{1,2} This possibility is excluded, however, by the value of the kinetic solvent deuterium isotope effect, $k(H_2O)/k(D_2O) = 2.5-2.8$ (Table 1) which is

† Present address: The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY.

too high for a reaction in which imidazole acts as a nucleophile, but is consistent with its activating a water molecule.⁵

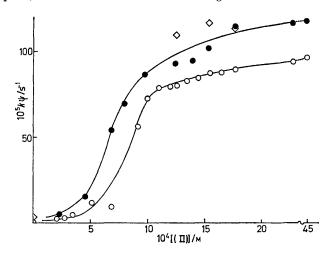


FIGURE. Relation between k_{ψ} and [(II)] at 25.0° in 0.015 Mborate buffer. \bigcirc pH 8.0; \bigcirc pH 8.5; \Diamond pH 9.17.

The imidazole group was unprotonated in all our experiments. The apparent values of the pK_a were determined spectrophotometrically above and below the critical micelle concentration (ca. $2 \times 10^{-4} \,\mathrm{M}$). As expected p K_a is decreased by micellization (Table 2). The mechanism observed here contrasts with the hydroxide-ion catalysis of

phosphate ester hydrolysis promoted by conventional micelles.3b Furthermore, involvement of histidine in general base-catalysed formation of a carbon-oxygen bond may provide a model for the mode of production of phosphatyl-serine intermediates in E coli alkaline phosphatase⁶catalysed hydrolyses.

Support from the Arthritis and Metabolic Diseases Institute of the United States Public Health Service and the University of Chile-University of California Cooperative Program supported by the Ford Foundation is gratefully acknowledged. We thank the S.R.C. for a Senior Visiting Fellowship (to J.M.B.) while on leave from the University of Warwick.

(Received, 4th September 1974; Com. 1129.)

¹ T. C. Bruice, J. Katzhendler, and L. R. Fedor, J. Amer. Chem. Soc., 1968, 90, 1333; C. Gitler and A. Ochoa-Solano, ibid., p. 5004; T. E. Wagner, C. Hsu, and C. S. Pratt, ibid., 1967, 89, 6366; W. Tagaki, T. Amada, Y. Yamashita, and Y. Yano, J.C.S. Chem. Comm., 1972, 1131.

² J. M. Brown and C. A. Bunton, preceding communication.

³ (a) C. A. Bunton, L. Robinson, and M. J. Stam, J. Amer. Chem. Soc., 1970, 92, 7393; (b) C. A. Bunton and L. G. Ionescu, ibid., 1973, 95, 2912.

⁴ C. A. Bunton and L. Robinson, J. Org. Chem., 1969, 34, 773.

⁵ W. P. Jencks, 'Catalysis in Chemistry and Enzymology,' McGraw-Hill, New York, 1969, Chapter 4. ⁶ I. Hinberg and K. J. Laidler, *Canad. J. Biochem.*, 1973, 51, 1096.