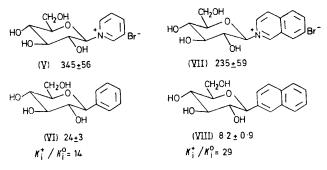

The Effective Charges at the Active Sites of Two Glycosidases

By R. S. THOMAS LOEFFLER, MICHAEL L. SINNOTT,* and MARK C. WHITING (Department of Organic Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS)

Summary At optimum pH, the active site of β -galactosidase has a slight net positive charge and that of β glucosidase a more substantial one.

 β -GALACTOSIDASE binds¹ and hydrolyses^{2,3} β -D-galactopyranosyl quaternary ammonium salts. A comparison of the binding constants of these compounds with those of their C-glycoside analogues should indicate the net charge at the enzyme active site, since the two series of compounds are isoelectronic and isosteric, differing only in charge. Such C-glycosides have been prepared and are indeed found to be competitive inhibitors.


 β -Galactosidase from *Escherichia coli*. K_i /mm values, measured against 4-nitrophenyl β -D-galactopyranoside at 25° in 0·10м sodium phosphate buffer, pH 7.0, containing 1.0 mм MgCl₂, are given. Figures in parentheses are $K_{\rm m}/\mu M$ values for the galactoside substrate derived from the inhibition experiment.

^a Ref. 3. ^b $K_{\rm m}$ value. For this salt $K_{\rm m} = K_{\rm i} = K_{\rm s}$ since the slow ($k_{\rm cat} = 0.36 \, {\rm s}^{-1}$) bond-breaking is rate-limiting.

Data indicate a very slight positive charge on the active site of β -galactosidase (corresponding to a full positive charge 7.2 Å from the nitrogen atom of the bound salt in pure water [D = 81]). This net charge is consonant with the suggestion⁴ of an anionic group at the active site of β galactosidase, since the net positive charge on β -glucosidase is greater despite the demonstration by Legler and Hasnain⁵ of the presence of an ionised carboxylate group at the active site of this enzyme.

- ¹ G. S. Case, M. L. Sinnott, and J.-P. Tenu, Biochem. J., 1973, 133, 99.
- ² M. L. Sinnott, J.C.S. Chem. Comm., 1973, 535.
 ³ M. L. Sinnott and S. G. Withers, Biochem. J., 1974, 143, 751.
- ⁴ M. L. Sinnott and I. J. L. Souchard, Biochem. J., 1973, 133, 89.
 ⁵ G. Legler and S. N. Hasnain, Z. physiol. Chem., 1970, 351, 25.
- ⁶ Yu. A. Zhdanov, G. A. Korol'chenko, and G. N. Dorfeenko, Doklady Akad. Nauk S.S.S.R., 1962, 143, 852.
- ⁷ R. U. Lemieux and A. R. Morgan, Canad. J. Chem., 1965, 43, 2205.
- ⁸ C. D. Hurd and W. A. Bonner, J. Amer. Chem. Soc., 1945, 67, 1972.

The analogy drawn between β -glucosidase and β -galactosidase³ is strengthened by the observation of slow β -glucosidase-catalysed hydrolysis of the salts (V) and (VII).

 β -Glucosidase from Amygdalae dulces. K_1 values were measured in 0.10 M sodium acetate buffer, pH 5.2, at 25°, against 4-nitrophenyl β -D-glucopyranoside.

The anomeric configuration of compounds (I)-(VIII) was established by the splitting (ca. 8 Hz.) of the n.m.r. signal of the anomeric proton in the tetra-acetates. ¹³C n.m.r. of the C-glycosides showed no acetal carbon. All compounds, and their tetra-acetates, gave satisfactory u.v. spectra and, if crystalline, elemental analyses. For inhibitors (II),⁶ (V)7, and (VI) correspondence with recorded literature properties was good. Compound (VI) could not be obtained crystalline, but was made from the crystalline tetraacetate,⁸ and gave one peak on column chromatography. Inhibition by C-glycosides (II) and (IV) was strictly competitive, and in the less precise measurements with compounds (V)-(VIII) an uncompetitive component of the inhibition could not be detected.

We thank the S.R.C. for support.

(Received, 16th September 1974; Com. 1167.