C(3)-Carboxy-cephem

By Douglas O. Spry

(The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206)

Summary C(3)-carboxy-cephem and its subsequent conversion into C(3)-ketones, amides, and various N-cephem acylamines is described.

Although the C(3)-formyl group of the cephem molecule was reported in 1966 by Woodward¹ et al. in the total synthesis of cephalosporin C, its conversion into the C(3)-carboxylic acid has not been reported.²

We now describe the synthesis of C(3)-carboxy-cephem and its subsequent conversion into other C(3)-derivatives, for example, ketones, amides, and various N-cephem acylamines.

Treatment of the ethylene acetal (2) [m.p. $142-143^{\circ}$] with $1\cdot 1$ equiv. of N-bromosuccinimide (NBS) and a trace of azobisisobutyronitrile (AIBN) in refluxing benzene, followed by chromatography on silica gel, gave 45-55% of the β -bromoethyl ester (3) [m.p. $129-130^{\circ}$] plus 10-20% of (1) (Scheme 1). Conversion of the β -bromointo the β -iodo-compound (>95%) followed by zinc-acetic acid cleavage gave the C(3)-carboxy- Δ^2 -cephem (4).

Esterification of (4) with diazoalkanes (CH₂N₂, Ph₂CN₂, p-N₂CH·C₆H₄·NO₂) or with the sodium carboxylate† of (4) and an alkyl iodide [e.g., n-propyl (75%) or isopropyl (70%) iodide] in HMPA³ followed by shifting the double bond (ox-red of S-1) gave (5; R=Me) [ν_{max} (CHCl₃) 1795—1800 cm⁻¹] m.p. 201° decomp., p-nitrobenzoate (PNB) m.p. 165—166°. Cleavage (PCl₃) of the C(7)-side chain provided the nucleus of (5), which was then acylated to provide the various C(7)-derivatives. Cleavage of the benzhydryl ester with trifluoroacetic acid (TFA) then gave (6), the C(3), C(4)-diacid (pK₈ = 4·0,8·0) resulting from the cleavage of the dibenzhydryl ester.

Biological tests show that, in general, the electron withdrawing effect of the C(3)-esters enhances both the gram negative and the gram positive activity, however, the

† The sodium carboxylate of (4) is soluble in EtOAc.

compounds show significantly reduced activity against penicillin resistant Staph. aureus.

J.C.S. CHEM. COMM., 1974

1013

The synthesis of the C(3)-carboxylic acid allows the preparation of many previously unreported C(3)-deri-

R²NCO (10) 90°/•

R³NH₂ (8) > 95°/•

R²CO₂CO₂Et
(9) 90°/•

MeMgBr

O
R²C - Me
Ox, Red
R³ C - R"

(11)
$$46 - 49^{\circ}$$
/•

SCHEME 2

 $\begin{array}{lll} R^3 = \Delta^3\text{-C}(3)\text{-substituted} & \text{benzhydryl} & 7\text{-}(2\text{-thienyl})\text{acetamidocephem-4-carboxylate} \\ R^3 = \Delta^3\text{-C}(3)\text{-substituted} & \text{benzhydryl} & 7\text{-}(2\text{-thienyl})\text{acetamidocephem-4-carboxylate} \\ \end{array}$

vatives of the cephem molecule. Various Δ^{3} -N-cephem-O-alkyl carbamates (7) [R' = Me (11%), Et (34%), PNB (60%)‡], for example, have been obtained using the modi-

fied Curtius reaction of Yamada; the presence of base causes complete double-bond isomerization from Δ^2 to Δ^3 (Scheme 2). Hydrogenolysis of the *p*-nitrobenzylcarbamate of (7) [R'=PNB] then affords the C(3)-amino compound (8)§ (>95%). Other N-cephem acylamine derivatives (ureas, thiocarbamates, and amides) are available from the C(3)-isocyanate (10) [ν_{max} (CHCl₃) 2260 cm⁻¹] obtained from the Curtius reaction on the mixed anhydride (9).

Catalytic reduction of the Δ^2 -acylazide [ν_{max} (CHCl₃) 2143 cm⁻¹] gave the Δ^2 -primary-amide (67%), while secondary and tertiary amides are available from the acid chloride or mixed anhydride.

C(3)-Ketones were prepared from the Grignard (MeMgBr) reaction on the mixed anhydride (9) to give 46-49% of the Δ^2 -C(3)-acetyl (11) [m.p. $139-140^\circ$] plus 40-50% of (4). It is, however, more convenient to prepare such C(3)-ketone derivatives via the Grignard¶ reaction on the Δ^2 -C(3)-formyl derivative (1) [Yields R" = Me (45-65%), Et, or Ph (30-35%)] to give diastereoisomeric carbinols (separated in the case of R" = Me,†† Et.‡‡). Oxidation to the corresponding ketones followed by double-bond isomerization then gave (12) [v_{max} (CHCl₃) 1795—1800 cm⁻¹] R" = Me (m.p. 201° decomp.), Et (m.p. 220° decomp.), Ph (m.p. 209° decomp.). The corresponding C(4)-acids were then obtained by TFA cleavage.

We thank Professor J. E. Baldwin for helpful discussions.

(Received, 22nd July 1974; Com 915.)

- † The C(3)-PNB carbamate-C(4)-acid has m.p. 149-150°.
- § Identical i.r. and n.m.r. to the product obtained by W. Spitzer et al. from an independent synthesis, personal communication.
- \P Optimum yields are obtained using 3 equiv. of Grignard reagent. Apparently two equiv. are tied up with the amide and the C(4)-proton.
 - †† One of the methyl diastereomeric carbinols is crystalline (m.p. 133—134°).
 - ‡‡ Secondary acetates are readily prepared from the diastereoisomeric carbinols.
- ¹ R. B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, and H. Vorbrüggen, J. Amer. Chem. Soc., 1966, 88, 852.
- ² For Δ²-C(3)-formyl cephalosporins see J. W. Chamberlin and J. B. Campbell, J. Medicin. Chem., 1967, 10, 966.
- J. E. Shaw, D. C. Kunerth, and J. J. Sherry, Tetrahedron Letters, 1973, 689.
 T. Shioiri, K. Ninomiya, and S. Yamada, J. Amor. Chem. Soc., 1972, 94, 6203.