By MASAHIRO NITTA,* KIYOSHI OGAWA, and KAZUO AOMURA (Faculty of Engineering, Hokkaido University, Sapporo, Japan 060)

Summary Although their monovalent cations are of similar size, the Ag⁺- and K⁺-exchanged forms of Ca^{ex}-A

show a different molecular sieve action; thus Ag^+ has a site selectivity different from K^+ .

In a previous report,¹ we have suggested that, in (Ag^{ex}, Na) -A, Ag^+ preferentially occupies the six oxygen ring sites (β -sites) in the zeolite A crystal structure, in contrast with the site selectivity of K⁺ determined by Breck.² However, it was unclear whether this site selectivity of Ag⁺

FIGURE. Effects of Ag⁺ and K⁺ exchange for Ca^{2+} on propane adsorption of zeolite A.

¹ M. Nitta, S. Matsumoto, and K. Aomura, J.C.S. Chem. Comm., 1974, 552.

- ² D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed, and T. L. Thomas, J. Amer. Chem. Soc., 1956, 78, 5963.
- ⁸ T. Takaishi, Y. Yatsurugi, A. Usa, and T. Kuratomi, J.C.S. Faraday I, in the press.
- ⁴ A. Dyer, W. Z. Celler, and M. Shute, Advances in Chemistry Series, 101, 436.

occurs in any other cation systems, that of K^+ having already been confirmed in other cation systems.³ We now report further evidence for the site selectivity of Ag⁺ in (Ag^{ex}, Ca^{ex})-A.

 $Ca_{1:00}^{ex}$ -A was prepared from Linde 4A, and then (Ag^{ex}, Ca^{ex})-A and (K^{ex}, Ca^{ex})-A were obtained. All of them had good crystallinity. The apparent pore size of $Ca_{1:00}^{ex}$ -A is about 4.3 Å, which indicates a large window (eight oxygen ring) aperture, and it is decreased when the cation occupies the eight oxygen ring sites (α -sites); 4.0 Å for Na-A, 3.3 Å for K-A. This is responsible for the molecular sieve action.

The isobaric adsorptions of propane on (Agex, Caex)-A and (Kex, Caex)-A as a function of the degree of exchange are shown in the figure. When K⁺ (of large ionic radius) occupies the α -sites, propane (kinetic diameter 4.3 Å) is not adsorbed. K⁺ first enters 33% of the α -sites and then enters the other sites. With (Kex, Caex)-A, a similarshaped adsorption curve has been observed for n-butane adsorption by Takaishi.³ On the other hand, for (Agex, Caex)-A, propane adsorption drops suddenly after 75%. This indicates that the Ag⁺ first enters into β -sites and then other sites which are independent of the window aperture, and last into the α -sites. An incomplete drop on the curve of (Agex, Caex)-A is probably due to the slight difference in ionic size between Ag^+ (ionic radius, 1.26 Å) and K^+ (1.33 Å); *i.e.*, a small residual adsorption on Ag_{0.99}^{ex}Ca_{0.01}^{ex}-A occurs as a result of incomplete closure of the window.

The site selectivity of Ag^+ was confirmed by a conventional X-ray study of hydrated (Ag^{ex} , Ca^{ex})-A according to the method previously described.¹

We propose that site selectivity of the exchangeable cation is determined by the ionic size. For example, it is suggested that Ba^{2+} (1.35 Å), larger than Ag^+ , was first introduced into α -sites in zeolite A,⁴ in contrast to Ca^{2+} (0.99 Å) occupying β -sites from the beginning of exchange.^{3,3}

(Received, 16th September 1974; Com. 1171.)