A New Reaction of 1-Bromoalk-1-ynes; Synthesis of 3-Alkylalk-1-ynes from Terminal Acetylenes

By Augustus J. Quillinan, Ejaz A. Khan, and Feodor Scheinmann*
(The Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT)

Summary The reaction of 1-bromoalk-1-ynes with two equivalents of butyl-lithium in hexane gives 3-butylalk-l-ynes; the reactive intermediate is a dilithioalkyne which can also be directly prepared from terminal acetylenes, and selective reaction with alkyl halides in hexane occurs at the propargylic site to provide a general synthesis of 3 -alkylalk-1-ynes.

We report a new synthesis of 3-butylalk-1-ynes from l-bromoalk-1-ynes and butyl-lithium, and a general synthesis of 3 -alkylalk-1-ynes which were inaccessible by direct synthesis from acetylene. ${ }^{1}$ Previous work on the reactions of 1 -bromoalk-1-ynes with basic reagents has shown that the nature of the base can direct the course of reaction. Thus with organo-metallic reagents in the absence of catalysts, metal-halogen exchange occurs to give the metal acetylide, ${ }^{2}$ whereas reaction with potassium t butoxide gives an allene-carbene. ${ }^{3}$ Nitrogen and sulphur bases lead to substitution and adducts. ${ }^{4}$

Reaction of the l-bromoalk-l-ynes (1) with at least two equivalents of butyl-lithium in hexane gave in each case the 3-butylalk-1-ynes (2) in excellent yields. $\dagger{ }^{13} \mathrm{C}$ n.m.r. spectroscopy showed the structures ${ }^{5}$ of the products since there is a specific signal for each different carbon atom along the hydrocarbon chain. ${ }^{6}$

Attempts to introduce methyl or propyl groups into 1-bromohept-1-yne ($1 ; \mathrm{R}=\mathrm{Bu}$) by reaction with the less
basic methyl-lithium in ether or with ethereal propylmagnesium bromide in the presence of butyl-lithium led only to hept-1-yne from a metal-halogen exchange reaction. However butylation occurs in ether with 1-bromopropyne ($\mathbf{1} ; \mathrm{R}=\mathrm{H}$) and with 1 -bromohept-1-yne ($\mathbf{1} ; \mathrm{R}=\mathrm{Bu}$) on reaction with butyl-lithium to give respectively hept-1-yne and 3-butylhept-1-yne (2; $\mathrm{R}=\mathrm{Bu}$).

Two mechanisms were considered for the formation of the 3 -butylalk-1-ynes (2). One pathway based on the work of Cymerman-Craig ${ }^{3}$ necessitates the formation of an allenecarbenoid (3) or zwitterion (4) intermediate from the abstraction of a proton at C-3 by butyl-lithium, expulsion of bromide at $\mathrm{C}-1$ and butylation at $\mathrm{C}-3$ with butyl-lithium (Scheme 1).

The reactive intermediates were trapped with cyclohexene and styrene. Allenecarbene ($4 ; \mathrm{R}=\mathrm{H}$), generated from propargyl bromide and butyl-lithium forms the allenylcyclopropane (5) with cyclohexene, but l-bromopropyne does not form this adduct under similar conditions and instead gives butyl bromide. Styrene is reported to be a better trap for allene-carbenes (4) but reaction of 1 -bromo-hept-1-yne ($\mathbf{1} ; \mathrm{R}=\mathrm{Bu}$) and two equivalents of butyllithium gave only 5 -phenyldecane (7). Formation of the product (7) is rationalised by Scheme 2 which requires the formation of butyl bromide, from metal-halogen exchange, for reaction with the anion (6) ${ }^{7}$ formed from addition of butyl-lithium to styrene.

(5)

(7)
(i) BuBr from $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C} \equiv \mathrm{CBr}+\mathrm{BuLi}$

Scheme 2

The favoured mechanism (Scheme 3) for the conversion of 1-bromoalk-1-ynes into 3 -butylalk-1-ynes requires metalhalogen exchange first to give butyl bromide and the lithium acetylide (8). Further reaction with butyl-lithium forms the dilithio-derivative (9) which selectively alkylates with butyl bromide in hexane only at the propargylic site; alkylation at the terminal acetylide carbon does not occur unless a suitable dipolar aprotic solvent is present. In
support of this mechanism it was demonstrated that 1 -bromohept-1-yne ($\mathbf{1} ; \mathrm{R}=\mathrm{Bu}$) with one equivalent of butyl-lithium, undergoes quantitative metal-halogen exchange within one hour at -33° in hexane and that no

(1) $+\mathrm{BuLi} \longrightarrow \mathrm{R}^{\prime} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CLi}+\mathrm{BuBr}$

(9)

(10)

Scheme 3

further reaction occurs. These results and the related work of Klein et al. ${ }^{8}$ lead to a simpler and more versatile method of preparing branched acetylenes (10). Thus reaction of pent-, hex-, hept- and oct-1-ynes with two equivalents of butyl-lithium gives, in each case, hexane-soluble, yellow dilithio acetylides (9) which alkylate at the 3 -position with ethyl, propyl and butyl bromides. \dagger An extension of this reaction with 1,4 -dibromobutane and the dilithioderivative of pent-1-yne gives 3,8 -diethyldeca-1,9-diyne (11).

We thank the Wellcome Foundation for a grant (to E.A.K.) to initiate the project, the S.R.C. for a Fellowship (to A.J.Q.), and Dr. B. J. Wakefield for stimulating discussions.
(Received, 11th October 1974; Com. 1274.)

[^0]
[^0]: ${ }^{1}$ G. Köbrich and P. Buck in 'Chemistry of Acetylenes,' ed. H. G. Viehe, Marcel Dekker, New York, 1969, p. 109; T. F. Rutledge, 'Acetylene Compounds,' Reinhold, New York, 1968, p. 22; T. L. Jacobs, Org. Reactions, 1949, 5, 1.
 ${ }_{2}^{2}$ S. Y. Delavarenne and H. G. Viehe in 'Chemistry of Acetylenes,' ed. H. G. Viehe, Marcel Dekker, New York, 1969, p. 716.
 ${ }^{3}$ J. Cymerman-Craig and C. D. Beard, Chem. Comm., 1971, 691, 692.
 ${ }_{5}{ }^{4}$ Ref. 2, p. 710.
 ${ }^{5}$ A. J. Quillinan and F. Scheinmann, unpublished work.
 ${ }^{-}$G. C. Levy and G. L. Nelson, 'Carbon-13 Nuclear Magnetic Resonance for Organic Chemists,' Wiley-Interscience, New York, 1972, p. 38.
 ${ }_{2}{ }^{2}$ B. J. Wakefield, 'The Chemistry of Organolithium Compounds,' Pergamon Press, Oxford, 1974, p. 92.

 - J. Klein and J. Y. Becker, J.C.S. Perkin II, 1973, 599; Tetrahedron, 1972, 28, 5385.

