A New Rearrangement of Dialkylmethyl(2-triphenylsilylethyl)ammonium Ylides

By YOSHIRO SATO,* YASUCHIKA BAN, and HIDEAKI SHIRAI

(Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan)

Summary Treatment of dialkylmethyl(2-triphenylsilylethyl)ammonium halides (1a-c) with n-butyl-lithium gave the corresponding (dialkylaminomethyl)triphenylsilanes (2a-c) via the formation of ylides (6a-c). THREE types of base-promoted reactions of quaternary ammonium salts are well known;¹ the Stevens rearrangement, the Sommelet-Hauser rearrangement, and the Hofmann elimination. The present paper reports a new

	TABLE. Yields $(\%)$ of products							
	\mathbf{R}^{1}	\mathbb{R}^2	x	(2)	(3)	(4)	(5)	(1) (recovery)
a	\mathbf{Me}	Me	Ι	50.9(56.5)	15.9(17.2)	$1 \cdot 1 (1 \cdot 3)$	$1 \cdot 9(2 \cdot 1)$	9.9
b	Et	Et	\mathbf{Br}	7.4(15.5)	30.5(63.8)	0.4(0.9)		$52 \cdot 2$
с	Me	Pr ¹	I	8·3(14·4)	41.8(72.7)	$1 \cdot 9(3 \cdot 2)$		42.7
d	Me	Ph	I		89·6`	1.0		-

Yields in parentheses based on unrecovered (1).

rearrangement of β -triphenylsilylethylammonium ylides (6) to triphenylsilylmethylamines (2).

When a small excess of n-butyl-lithium was added to a chilled $(-15^{\circ} \text{ to } -25^{\circ})$ solution of trimethyl(2-triphenylsilylethyl)ammonium iodide (1a) in ether-hexamethylphosphoramide (HMPA), a red colour appeared and then disappeared after a few seconds. Treatment of this reaction mixture gave (dimethylaminomethyl)triphenylsilane (2a), triphenylsilanol (3), hexaphenyldisiloxane (4), and n-butyltriphenylsilane (5), besides (1a). A similar reaction of diethylmethyl(2-triphenylsilylethyl)ammonium bromide (1b) or dimethylisopropyl(2-triphenylsilylethyl)ammonium iodide (1c) with n-butyl-lithium led to (diethylaminomethyl)triphenylsilane (2b) or (methylisopropylaminomethyl)triphenylsilane (2c), accompanied by (3), respectively.

In all cases the silvlmethylamines $(2a-c)^{\dagger}$ were the sole basic products and none of the Stevens 1,2-shift products could be detected. The formation of the silvlmethylamines (2a-c) from the silvlethylamines (1a-c) is thought to result from nucleophilic attack of the intermediate carbanions (6a-c) on the triphenylsilvl unit followed by elimination of ethylene.

Reaction of dimethylphenyl(2-triphenylsilylethyl)ammonium iodide (1d) with n-butyl-lithium, however, gave

† Satisfactory analytical results were obtained for all new compounds.

¹ S. H. Pine, 'Org. Reactions,' Wiley, New York, 1970, vol. 18, p. 403.

+ Ph_3SiOH + $(Ph_3Si)_2O$ + Ph_3SiBu^n + C_2H_4

NN-dimethylaniline (63.6%), (3) (89.6%), (4) (1.0%), and no (methylphenylaminomethyl)triphenylsilane expected from the results described above.

(Received, 22nd October 1973; Com. 1463.)