Reaction of Phosphorus Pentachloride with β -Ketoesters. A Convenient Route for the Preparation of β -Chlorovinyl Acids

By Abdel-Hamid Youssef* and Hamdy M. Abdel-Maksoud

(Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt)

Summary A number of trans- β -chlorocinnamic acids have been synthesised by the action of phosphorus pentachloride on the corresponding β -ketoesters.

FROM our interest in the kinetics and mechanisms of alcoholysis of chloro-olefins,1 we wanted to prepare compounds of the type $R^{1}C_{6}H_{4}\cdot CCl = CH\cdot CO_{2}R^{2}$. Earlier preparations of β -chlorocinnamic acid from phenylacetylene and oxalyl chloride,² or by the reaction of PCl₅ with benzyl acetic ester,³ reported low yields (16 and 25% respectively) and a mixture of cis-trans-isomers. The reaction of phosphorus pentachloride with β -ketoesters, readily prepared by acylation of ethyl acetoacetate with the appropriate acid chloride,⁴ was investigated as a possible route to β -chlorovinyl acids.

Treatment of (Ia—d) with PCl_5 in benzene gave directly the corresponding β -chlorovinyl acids (IIa-d) (40-50%).

 $\begin{array}{ll} p\text{-}R\text{-}C_{6}H_{4}\text{-}CO\text{-}CH_{2}\text{-}CO_{2}Et & p\text{-}R\text{-}C_{6}H_{4}\text{-}CCl=CH\text{-}CO_{2}H \\ (I) & (II) \\ a; R = H, b; R = Me, c; R = NO_{2}, d; R = Cl. \end{array}$

The existence of cis- and trans-(IIa), was indicated by the two vinylic proton peaks in the n.m.r. spectrum in regions similar to those reported⁵ for ethyl β -chloro-cis- and -transcrotonates. Pure trans-(IIa) only was obtained by fractional crystallisation of the barium salt of the crude acid. The β -ketoesters (Ib-d), however, gave only the transisomers (IIb---d) as shown by n.m.r. spectra and attempted fractional crystallisations of their barium salts. Compounds (IIb-d) are new and their elemental analysis, and i.r. and n.m.r. spectra are in complete agreement with the assigned structures. The n.m.r. absorptions of the vinylic protons in methyl α -chlorocinnamates⁶ appear at low fields (indistinguishable from the phenyl protons) as compared to those found here for the β -chloro-isomers.

The isolation of only the trans-isomers, presumably, favours a mechanism in which $PCl_4^+-PCl_6^-$ ions react with the keto-group of the ester as with ketones,7 rather than with the enol-form. This will be discussed in detail in the full paper.

(Received, 4th December 1973; Com. 1647.)

¹Y. Iskander, E. Mansour, A. G. A. Rehiem, Y. Riad, and A. A. Youssef, Chem. Comm., 1968, 976.

² M. S. Kharasch, S. S. Kane, and H. C. Brown, J. Amer. Chem. Soc., 1942, 64, 333.
³ Z. Macierewicz and S. Janiszewska-Brozek, Roczniki Chem., 1950, 24, 167.
⁴ C. R. Hauser and B. E. Hudson, jun., Org. Reactions, 1942, 1, 298.
⁵ J. S. Pizey and W. E. Truce, J. Chem. Soc., 1964, 865.
⁶ D. J. Burton and J. P. Caronymold. Technology Letters 1067, 1525.

- ⁶ D. J. Burton and J. R. Greenwald, *Tetrahedron Letters*, 1967, 1535. ⁷ M. S. Newman and L. L. Wood, jun., *J. Amer. Chem. Soc.*, 1959, 81, 4300.