One-step Synthesis of Oxazolidine-2-thiones in Dimethyl Sulphoxide

By MICHEL CHANON, FRANÇOISE CHANON, and JACQUES METZGER*

(Laboratoire de Chimie Organique A, Section Saint-Jérôme, Université de Provence, Marseille, France)

Summary The Knorr reaction when conducted in an aprotic polar solvent provides a new route to oxazolidine-2-thiones.

REACTION of α -amino-alcohols with carbon disulphide in basic aqueous or alcoholic media is known¹ to give either an oxazolidine-2-thione or a thiazolidine-2-thione depending on the structure of the amino-alcohol.² The route taken by the reaction in aqueous KOH in refluxing CS₂ is constrained by the steric requirements of the carbon bearing the hydroxygroup. Thus primary alcohols react to give thiazolidine-2thiones, whereas amino-alcohols with a sterically hindered hydroxy-group give oxazolidine-2-thione.

Amino-alcohol	R1	\mathbf{R}^2	\mathbb{R}^3	\mathbb{R}^4	M.p.	Yield
CH,OH·CH,NH,	 н	н	н	н	99°	82%
MeCH(OH)·CH ₂ NH ₂	 H	н	н	Me	74°	93 %
Me ₂ C(OH)·CH ₂ NH ₂	 н	H	Me	Me	109°	94 %
CH ₂ OH·CH(NH ₂)Me	 н	Me	н	Н	76°	72 %
CH ₂ OH·C(NH ₂),Me	 Me	Me	н	Н	123°	74 %

We report that by conducting the reaction in an aprotic polar solvent a very extensive acceleration of the xanthate (I) formation is observed (Scheme). \dagger

A representative procedure for the preparation of an oxazolidine-2-thione is given as follows.

To 150 ml of anhydrous DMSO, containing a small

amount of KOH powder (or $NaNH_2$), 0.05 mol of ethanolamine was added with stirring, temperature $<11^{\circ}$, followed by addition of the stoicheiometric amount of carbon disulphide.

Scheme

The reaction mixture was then heated $(50^{\circ}, 2 \text{ h})$. The disappearance of (I) $(\lambda_{\max} 292 \text{ nm})$ and the appearance of (II) $(\lambda_{\max} 245, 345 \text{ nm})$ were followed by u.v. spectra and t.l.c. The solvent was then removed and the oxazolidine-2-thione was recrystallised from cyclohexane-benzene. Other amino-alcohols used are shown in the Table.

(Received, 16th January 1974; Com. 059.)

† An alternative one-step synthesis has been described but the yields are lower (N. Somerville and C. Anderson, J. Org. Chem., 1960, 25, 656.)

¹L. Knorr and P. Roessler, Ber., 1908, 36, 1278; A. A. Rosen, J. Amer. Chem. Soc., 1952, 74, 1952; H. Bruson and J. W. Eastes, J. Amer. Chem. Soc., 1937, 59, 2011.

⁸ M. G. Ettlinger, J. Amer. Chem. Soc., 1950, 72, 4792; J. C. Crawhall and D. F. Elliot, J. Chem. Soc., 1952, 3094.