Co-ordinatively Unsaturated Molybdenum and Tungsten Cyclopentadienyl Complexes; Molecular Structures of $[WCl(CF_3C_2CF_3)_2(\eta^5-C_5H_5)]$ and $[Mo(C_4F_6)_2(C_5H_5)_2]$

By Jack L. Davidson, Michael Green, David W. A. Sharp,* † F. Gordon A. Stone,* and Alan J. Welch

(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS, and †Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary Reaction of $[MCl(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) with acetylenes affords the 16-electron species $[MCl-(RC_2R)_2(\eta^5-C_5H_5)]$, structurally characterised by X-ray crystallography, and shown to react with donor ligands and with TlC_5H_5 .

ALTHOUGH there has been considerable interest in reactions of acetylenes with some transition-metal complexes, related studies with molybdenum and tungsten species have received relatively little attention.¹ Previous investigations of cyclopentadienyl complexes have been limited to

 \dagger The n.m.r. data suggests that the complexes (I) are stereochemically non-rigid; the fluxional process being more facile when $R = CF_{a}$.

the reactions of $[MoX(CO)_3(\eta^5-C_5H_5)]$ (X = H, Me, Et) with PhC₂H and PhC₂Ph,² and of $[WPh(CO)_3(\eta^5-C_5H_5)]$ with PhC₂Ph.³

Treatment of $[MCl(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) with acetylenes affords novel 16-electron mononuclear complexes (I) (M = Mo or W; R = Me, CF₃, CO₂Me) (Scheme), in a four-circle diffractometer). The 16-electron complex has approximate mirror symmetry with the tungsten atom in a distorted octahedral environment, ca. $2 \cdot 03$ Å above the plane of the cyclopentadienyl ring. Important parameters are: W-Cl, $2 \cdot 42(2)$; W-C(11), $2 \cdot 07(2)$; W-C(12), $2 \cdot 04(3)$; W-C(21), $2 \cdot 05(3)$; W-C(22), $2 \cdot 10(3)$; C(11)-C(12),

 $[MCI(CO)(\eta^4 - C_4 Ph_4)(\eta^5 - C_5 H_5)]$

SCHEME

reaction which involves loss of all three carbon monoxide ligands. The spectroscopic data[†] suggested that in contrast with many complexes obtained from reactions with acetylenes the two acetylene molecules were not linked together, but were π -complexed to the metal, as is the case for the 18-electron species $[M(CO)(RC_2R)_3]$ (M = Mo or W; R = Me or CF₃).⁴ This was confirmed by an X-ray crystallographic study of complex (I) (M = W, R = CF₃) (Figure 1), photographic data having shown the molybdenum analogue to be isostructural.

Crystal data: triclinic, P1, a = 7.942(1), b = 9.302(1), c = 12.828(2) Å, $\alpha = 93.76(1)$, $\beta = 104.76(1)$, $\gamma = 111.57-(1)^{\circ}$, U = 841.38(20) Å³, $D_{o} = 2.401$, Z = 2, μ (Mo- K_{α}) = 75.495 cm⁻¹; R = 0.079 for 2406 reflections (Syntex P2₁)

FIGURE 1. Molecular structure of $[W(Cl)(CF_3C_2CF_3)_2(\eta^5-C_5H_5)]$.

(Å 1·28(4); C(21)-C(22), 1·23(4; the mean alkyne C-C-C angle is $140\cdot3(3)^{\circ}$. The alkyne-C₄ units are planar within experimental error, and have an acute folding angle at tungsten of *ca.* 65°.

From the reaction of $[MoCl(CO)_3 (\eta^5-C_5H_5)]$ and but-2-yne it has been possible to isolate an intermediate duroquinone complex (II; M = Mo) in high yield and this reacts with excess MeC₂Me to give (I; M = Mo, R = Me) and free duroquinone. The reaction with hexafluorobut-2-yne gives in contrast a tetrakis(trifluoromethyl)cyclopentadienone derivative (III; M = Mo) in a closed system, but if the displaced carbon monoxide is removed at intervals the 16-electron complex (I; M = Mo, R = CF₃) is obtained, in addition to small quantities of $[MoCl(CF_3C_2CF_3)(\eta^5-C_5H_6)]_2$. The latter, which probably contains bridging acetylenes, is also formed on irradiating (u.v.) solutions of (I; M = Mo, R = CF₃).

The reactivity of the co-ordinatively unsaturated species (I) is clearly of interest, and reaction (room temp.) of (I; M = Mo, $R = CF_3$) with triphenylphosphine affords the 18-electron system (IV; M = Mo) in high yield. The Mo-Cl and W-Cl bonds are also labile and treatment with TlC₆H₅ affords (V; M = Mo, W). Examination of the n.m.r. spectra suggested the possibility that an insertion reaction had occurred involving one of the co-ordinated hexafluorobut-2-yne ligands. This was confirmed by an X-ray crystallographic study on (V; M = Mo) (Figure 2).

Crystal data: monoclinic, $P2_1/n$, a = 12.905(6), b = 9.461(3), c = 15.302(6) Å, $\beta = 106.34(4)^\circ$, U = 1792.7(13) Å³, $D_c = 2.038$, Z = 4, $\mu(Mo-K_{\alpha}) = 8.573$ cm⁻¹; R = 0.095 for 2249 reflections. For the 18-electron species (V) the metal to $\eta^{5-}C_5$ plane distance is 2.02 Å. The C(10)—C(13) unit is again planar, with Mo–C(11) and Mo–C(12) distances of 2.15(1) and 2.13(2) Å respectively. The bond C(11)–C(12) is 1.25(2) Å, and the C–C–C angles at C(11) and C(12)

are 138(1)° and 142(1)° respectively. Metal-carbon distances to the η^4 -C₅ ring are: C(2), 2·32(2); C(3), 2·31(3); C(4), 2.33(6); C(5), 2.37(3) and {C(1)}, 2.78(2) Å. The unique carbon atom C(1) is ca. 0.44 Å out of the C₄ plane, *i.e.* an envelope conformation, and the acute folding angle between the C(2), C(5), C(1) and the C(2), C(3), C(4), and C(5) planes is 26.3°. The η^1 -alkene unit is planar with a C(21)-C(22) bond length of 1.32(2) Å, the Mo-C(21) bond being 2.25(2) Å.

In contrast to but-2-yne, hexafluorobut-2-yne, or dimethyl acetylenedicarboxylate, diphenylacetylene reacts with $[MCl(CO)_3(\eta^5-C_5H_5)]$ (M = Mo, W) below 60 °C or on irradiation to give the monocarbonyl species (VI; M = Mo, W). It has been reported³ that the complex $\lceil WPh(O) \rceil$ - $(PhC_{2}Ph)(\eta^{5}-C_{5}H_{5})$ is formed on reaction of $[WPh(CO)_{3} (\eta^5-C_5H_5)$] with PhC₂Ph, and it is of interest that oxygen reacts with (VI) to give the related species (VII; M = Mo), W). With acetylenes RC_2R (R = Me, CF_3) the species (VI) react to give the 'mixed' acetylene 16-electron complexes (VIII, M = Mo, $R = CF_3$; M = W, R = Me or CF_3 ; one of these complexes (M = Mo, R = CF_3) reacts with excess of $CF_3C_2CF_3$ to give (I). In contrast (VI) reacts with diphenylacetylene to give the 18-electron cyclobutadiene complex (IX), previously obtained by Maitlis and Efraty⁵ by a ligand exchange reaction.

One of us (J.L.D.) is indebted to I.C.I. for a Research Fellowship.

(Received, 3rd July 1974; Com. 798.)

FIGURE 2. Molecular structure of $[Mo(CF_3C_2CF_3)(\eta^5-C_5H_5) \{C(CF_{3}): C(CF_{3})C_{5}H_{5}\}\}$

¹ F. L. Bowden and A. B. P. Lever, Organometallic Chem. Rev. (A), 1968, 3, 227.
² A. Nakamura and N. Hagihara, Nippon Kagaku Zasshi, 1963, 344; Chem. Abs., 1963, 59, 14,021.
³ N. G. Bokiy, Yu. V. Gatilov, Yu. T. Struchkov, and N. A. Ustynyuk, J. Organometallic Chem., 1973, 54, 213.
⁴ D. P. Tate, J. M. Augel, W. M. Ritchey, B. L. Ross, and J. G. Grosselli, J. Amer. Chem. Soc., 1964, 86, 3261; B. M. Laine, R. E. Moriarty, and R. Bau, *ibid.*, 1972, 94, 1402.
⁴ P. Maitlio and A. Efraty. L. Organometallic Chem. 1965, 4, 172.

⁵ P. M. Maitlis and A. Efraty, J. Organometallic Chem., 1965, 4, 172.