Chemistry of Pentakis(trimethyl phosphite)iron(0), [Fe{P(OMe)₃}₅]

By E. L. MUETTERTIES* and J. W. RATHKE (Spencer T. Olin Chemistry Laboratory, Cornell University, Ithaca, New York 14853)

Summary A new zerovalent iron complex, [Fe $\{P(OMe)_3\}_5$], has been prepared; this volatile molecule has a relatively

basic iron atom that is readily protonated and alkylated.

WE have prepared the first zerovalent iron complex with all phosphite ligands by the reduction of $[FeCl_2{P(OMe)_3}_3]$ with sodium amalgam in the presence of excess of trimethyl phosphite. Yellow crystals of $[Fe{P(OMe)_3}_5]$ were obtained by recrystallization from pentane and vacuum sublimation at 80 $^{\circ}\mathrm{C}$ (sublimation results in some loss due to thermal decomposition). Elemental analyses and its mass and n.m.r. spectra defined its composition and structure. The ³¹P nmr. spectrum at -80 °C showed an A_2B_3 pattern ($J_{PP'}$ 145 Hz), establishing that the solutionstate structure has trigonal bipyramidal geometry. Explicably, the molecule is stereochemically nonrigid.¹

A relatively high electron density on the iron atom in $[Fe \{P(OMe)_3\}_5]$ tends to dominate its chemistry. Molecular oxygen reacts rapidly with solutions, with oxidation (noncatalytic) of phosphite to phosphate. Protonation at the metal centre is fast with CF₃CO₂H. Some measure of the basicity of the iron atom was realized in the reaction (1)with $NH_4^+PF_6^-$, which gave a cationic hydride, isolated and

$$[Fe \{P(OMe)_{3}\}_{5}] + NH_{4}+PF_{6}^{-} \\ \rightarrow [HFe \{P(OMe)_{3}\}_{5}]+PF_{6}^{-}+NH_{3} (1)$$

analysed as the crystalline hexafluorophosphate salt, which has ${}^{1}H$ and ${}^{3}P{}^{1}H$ spectra that are, respectively, the X and AB_4 parts of the expected AB_4X spectrum. The robust character of this hydride is rather sharply differentiated from the analogous d^{8} [HNi{P(OEt)_{3}}]⁺ species.² Hydride and phosphite ligands are not highly labile in the iron cation as shown by n.m.r. studies of mixtures of $[HFe \{P(OMe)_3\}_5]^+$ and $P(OMe)_3$ and of $[HFe \{P(OMe)_3\}_5]^+$ and $[Fe{P(OMe)_3}_5]$. Consistently, the cationic hydride does not add ethylene nor is it a catalyst for isomerization of hex-1-ene. CF3CO2H decomposes the hydride to give hydrogen and ostensibly $[Fe{P(OMe)_3}_5]^{2+}$ which appears to have an A₂B₃ spectrum and to be more rigid than the neutral precursor; the octahedral $[Fe{P(OMe)_3}_6]^{2+}$ ion, independently synthesized as the $B_{12}H_{12}^2$ salt from excess of phosphite, iron(II) iodide, and Li₂B₁₂H₁₂, was shown not to be a product of the acid-decomposition of the cationic hvdride.

Iodide ion is displaced from MeI by $[Fe{P(OMe)_3}_5]$ to give the $[MeFe[P(OMe)_3]_5]^+$ cation which was isolated as the PF_6^- salt. The composition and structure for this six-coordinate complex were defined by elemental analyses and n.m.r. studies (AB₄ ³¹P spectrum). With EtI the putative ethyl cation is too reactive for isolation; ethylene is evolved and the cationic hydride is formed. Reaction of allylic halides with $[Fe{P(OMe)_3}_5]$ provides a ready synthesis of a new class of π -allyl complexes of the form $\lceil (\pi$ -allyl) Fe- $\{P(OMe)_3\}_4$]⁺. The C_3H_5 derivative has ally C-H resonances characteristic of π -allyl metal structures. Benzyl iodide does not yield a π -benzyl derivative. Coupling occurs and the major products are bibenzyl and $[Fe{P(OMe)_3}_3I_2]$.

Unlike the d^{10} analogue³ [Ni {P(OMe)₃}₄], the iron complex does not readily undergo substitution reactions. There is no fast exchange (n.m.r. time scale) between $[Fe \{P(OMe)_3\}_5]$ and $P(OMe)_3$ up to 75°, and carbon monoxide does not detectably react in a day (benzene medium). However, substitution reactions are greatly accelerated by employment of polar solvents. For example with a diethyl ether medium, $[Fe{P(OMe)_3}_4CO]^{\dagger}$ and $[Fe{P(OMe)_3}_3^{-1}]^{\dagger}$ (CO)₂] are formed in a day at 25°, and with methanol, substitution to give the dicarbonyl is fast at 25°. Since there is no n.m.r. evidence of $[Fe{P(OMe)_3}_5]$ interaction with such polar solvents, the qualitative mechanistic features of this solvent effect are not evident. We4 find such an effect with other co-ordination complexes, e.g. [HCo- $\{P(OMe)_{3}\}_{4}$, hence the phenomenon appears to have general synthetic potential. Reaction of $[Fe \{P(OMe)_3\}_5]$ with PF_3 is much faster than with CO and does not require polar reaction media; the product is $[Fe{P(OMe)_3}_3(PF_3)_2]$, a stereochemically nonrigid C_{2v} -trigonal bipyramidal species which yields a complex ³¹P spectrum only at low temperatures and is stereochemically analogous to [Fe(PMe₃)₃- $(\mathrm{PF}_3)_2].^5$

We thank the National Science Foundation for support of this research.

(Received, 22nd July 1974; Com. 917.)

† Not isolated; spectrally defined.

¹ Precise activation parameters for the intramolecular rearrangement have been determined and will be reported separately by P. Meakin and J. P. Jesson. ² C. A. Tolman, J. Amer. Chem. Soc., 1972, 94, 2994.

- ³ M. Meier, F. Basolo, and R. Pearson, Inorg. Chem., 1969, 8, 795.
- ⁴ E. L. Muetterties and F. J. Hirsekorn, unpublished data.
- ⁵ E. L. Muetterties and J. W. Rathke, unpublished data.