\boldsymbol{X}-Ray Structure and Absolute Configuration of (-)-Pseudocopsinine

By Said-Murat Nasyrov, Valentine G. Andrianov,* and Yuri T. Struchrov
(Institute of Organo-Element Compounds, U.S.S.R. Academy of Sciences, Moscow)

Summary The structure and molecular configuration of the alkaloid pseudocopsinine has been established unequivocally by an X-ray diffraction study of its hydrobromide; this is the first determination of absolute stereochemistry in this group of indole alkaloids.

The alkaloid (-)-pseudocopsinine was first isolated from Vinca erecta Rgl. et Schmalh. ${ }^{1}$ To establish its structure and absolute configuration we have undertaken a complete X-ray study of its hydrobromide $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{HBr}, \mathrm{H}_{2} \mathrm{O}$.

(I)

(II)

Crystal data. Orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, $a=9.777(6), b=16.056(8), c=12 \cdot 714(6) \AA, V=1996 \AA^{3}$, $M=437 \cdot 4, \quad D_{\mathrm{m}}=1.46, \quad D_{\mathrm{c}}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$. Intensities of 3160 independent reflections with $|F|^{2} \geqslant$ $3 \sigma\left(|F|^{2}\right)$ were measured by an automatic Hilger-Watts diffractometer ($\mathrm{Cu}-K_{\alpha}$ radiation, graphite monochromator,
ω-scan, ordinate analysis, no absorption correction). The structure was solved by the heavy-atom technique and refined by the anisotropic least-squares procedure to $R=0.058$. The absolute configuration was determined by 24 Friedel pairs ${ }^{2}$ using the programme in ref 3.
The present study has shown that pseudocopsinine has the structure (II) which differs from (I) proposed earlier. ${ }^{1}$ The skeleton formula (II) was established by the ${ }^{13} \mathrm{C}$ n.m.r. study of vindolinine. ${ }^{4}$ The absolute configuration is $2 R$, $4 R, 7 S, 16 R, 19 R, 20 S, 21 S$.

The configuration of molecular fragments determined by torsional angles is as follows: benzene ring a planar, pyrrolidine rings B and F envelope, 5 -membered ring, C ($2,7,21,20,19$) a half-chair, 5 -membered ring $\mathrm{D}(2,16,17,20,19)$ an envelope, cyclohexane ring $\mathrm{E}(2,16,17,20,21,7)$ a boat, pyrrolidine ring F an envelope, piperidine ring G a twistboat. Fusion of cycles: b/c-trans, C/F-cis, c/G-trans, F/G-cis. The bond lengths and angles have usual values.

We thank Prof. S. Yu.Yunusov, V. M. Malikov, and M. R. Yagudajev for providing samples and helpful discussions.
(Received, 30th July 1974; Com. 970.)

[^0]
[^0]: ${ }^{1}$ N. Abclurakhimova, P. Kh. Yuldashev, and S. Yu. Yunusov, Doklady. Akad. Nauk S.S.S.R., 1967, 173, 87.
 ${ }_{2}^{2}$ J. M. Bijvoet, A. F. Peerdeman, and A. I. van Bommel, Nature, 1951, 168, 271.
 ${ }^{3}$ A. N. Chekhlov, Yu. T. Struchkov, and A. I. Kitajgorodski, Doklady Acad. Nauk S.S.S.R., 1974, 215, 122.
 ${ }^{4}$ A. Ahond, M.-M. Janot, N• Langlois, G. Lukacs, P. Potier, P Rasoanaivo, M. Sangare, N. Neuss, M. Plat, J. Le Men, E. W. Hagaman, and E. Wenkert, J. Amer. Chem. Soc., 1974, 96, 633.

