Stereochemistry of the Reactions of Oxetans with Rhodium(1) and Silver(1) Catalysts

By HOWARD A. J. CARLESS

(Department of Chemistry, Birkbeck College, Malet Street, London WCIE 7HX)

Summary Methyl-substituted oxetans (1)---(4) undergo a highly stereoselective ring-cleavage reaction on treatment with [Rh(CO)₂Cl]₂ or AgBF₄.

982

ONE of the problems of assigning stereochemistry to geometrical isomers of substituted oxetans is that proton vicinal coupling constants are similar in magnitude for both cis- and trans-oxetan isomers.¹ Generally, the cis-isomers have marginally larger vicinal coupling constants.† It is now reported that stereochemistry can be assigned to the

TABLE. But-2-ene product distributions (%) from metal-ion catalysed oxetan ring-cleavage

	[Rh(CO) ₂ Cl] ₂ ^a		AgBF₄ ^b	
	trans	cis	trans	cis
1)	96	4c	97	3
2)	5.5	94.5°	6	94
3)	96 .5	3.5	98.5	1.5
4)	3.5	96.5	4	96
5)	28	72	28	72

^a Typical experiments employed a 10:1 mole ratio of oxetan to catalyst, *ca.* 10% conversion to products, at 80° in CCl₄. ^b 70-80°, no added solvent. ^c <0.5% propene produced.

† E.g. oxetans (2), (4) and (5) have ${}^{3}J_{2,3}(cis)$ 7.6, 6.7 and 7.0 Hz; oxetans (1), (3) and (5) have ${}^{3}J_{2,3}(trans)$ 6.0, 6.1 and 6.0 Hz, respectively.

¹See, e.g. N. J. Turro and P. A. Wriede, J. Amer. Chem. Soc., 1968, 90, 6863; J. A. Barltrop and H. A. J. Carless, *ibid.*, 1972, 94, 1951; N. C. Yang, M. Kimura, and W. Eisenhardt, *ibid.*, 1973, 95, 5058.

² G. Adames, C. Bibby, and R. Grigg, J.C.S. Chem. Comm., 1972, 491.
³ N. C. Yang and W. Eisenhardt, J. Amer. Chem. Soc., 1971, 93, 1277.

4 Y. Y. Samitov, A. V. Bogatskii, and G. A. Filip, Zhur. org. Khim., 1971, 7, 585.

methyl-substituted oxetans (1)---(5) by treatment with rhodium dicarbonyl chloride dimer or silver tetrafluoroborate (see Table). Grigg and co-workers² have previously noted the ring-cleavage of some oxetans catalysed by this Rh^I complex. Oxetans (1)---(4) undergo a highly stereoselective ring-cleavage reaction to give the alkene and a carbonyl compound. Oxetan (5) would then be expected

to give a mixture of cis- and trans-alkene, as observed. This method confirms the structural assignments made by Yang³ for oxetans (3)—(5), but reverses the assignment of the 2,3-dimethyloxetans (1)—(2) made on the basis of n.m.r. data by Russian workers.4

(Received, 24th September 1974; Com. 1202.)