2-Methylenebicyclo [3,2,1]octa-3,6-diene, a Bishomofulvene-type Structure

By Mitsuru Sakai \dagger

(Hanagatami Co., Fukui, 915-02 Japan)

Summary From a study of its n.m.r. and u.v. spectra and its dipole moment, it has been shown that the resonance contribution of a bishomofulvene-type structure is important in 2 -methylenebicyclo[3,2,1]octa-3,6-diene (2).

We report the syntheses and properties of 2-methylenebicyclo $[3,2,1]$ octa- 3,6 -diene (2) and 2 -methylenebicyclo-
[3,2,1]oct-3-ene (4). The olefin (2) was obtained in good yield either from the reaction of $(\mathbf{1})^{1}$ with triphenylphosphine methylide in THF or from the addition of methylmagnesium iodide to (1) followed by dehydration of the resulting methylcarbinol. The structure of (2) followed from its ${ }^{1} \mathrm{H}$ n.m.r. $\ddagger[\tau 3.60-4.20(4 \mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{m})$, $6.71(1 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{m})$, and $7.85(2 \mathrm{H}, \mathrm{m})]$ and mass

[^0]\ddagger Detailed analysis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra will be reported in a forthcoming full paper.
spectra. The latter spectrum confirmed the molecular weight (118) and the base peak was attributed to $(M-1)^{+}$,

(1)

(2)

(4)

(5)

(5a)
corresponding to $\mathrm{C}_{9} \mathrm{H}_{9}{ }^{+}$. Compound (4) was similarly prepared from (3) ${ }^{2} \tau 4 \cdot 20(2 \mathrm{H}, \mathrm{m}), 5 \cdot 20(2 \mathrm{H}, \mathrm{m})$, and $7 \cdot 5-$ $8.5(8 \mathrm{H}, \mathrm{m})]$.
The most striking physical properties of (2) are its ${ }^{13} \mathrm{C}$ n.m.r. and u.v. spectra and its dipole moment. ${ }^{3}$

The ${ }^{13} \mathrm{C}$ n.m.r. chemical shifts of $\mathrm{C}-2$ and $\mathrm{C}-9$ in (2) are δ $\left(\mathrm{Me}_{4} \mathrm{Si}\right) 144 \cdot 5$ and $110 \cdot 3$, respectively. Under identical conditions, the ${ }^{13} \mathrm{C}$ n.m.r. chemical shifts of $\mathrm{C}-2$ and $\mathrm{C}-9$ in (4) are $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right) 153.5$ and 102.5 , respectively, i.e., it could be taken that the C-2 in (2) is more electronegative than that in (4) and the C-9 in (2) is more positive than that in (4). ${ }^{4}$ This suggests that resonance contribution of (2a) is important in (2).
Measurement of the u.v. spectrum of (2) showed a broad absorption having fine structure at $243 \mathrm{~nm}(\epsilon 12,000)$ (calculated ${ }^{5} \lambda_{\text {max }} 232 \mathrm{~nm}$). The olefin (4) has a spectrum with $\lambda_{\max }$ at 230 nm , and $\epsilon_{\max } 5000$. This bathochromic effect of 13 nm in (2) can be accounted for in a similar manner $[c f .(5) \longleftrightarrow(5 a)]$.
The dipole moment was found to be 0.59 D , which suggests a high degree of charge separation in (2).§
These data for (2) are in accord with a delocalized bishomofulvene-type resonance structure (2a). ${ }^{6}$

I thank Professor S. Masamune and Dr. K. Shinsaka for helpful discussions and Dr. S. Koto for spectroscopic measurements.
(6)
(Received, 7th September 1973; Com. 1262.)
§ The dipole moment was determined by measuring the dielectric constants and densities of solutions of varying molarity at 20° in benzene and extrapolating.
${ }^{1}$ P. K. Freeman and D. G. Kuper, Chem. and Ind., 1965, 424; W. R. Moore, W. R. Moser, and J. E. LaPrade, J. Org. Chem., 1963, 28, 2200.
${ }^{2}$ H. L. Goering and U. Mayer, J. Amer. Chem. Soc., 1964, 86, 3753; M. Sakai, unpublished work.
${ }^{3}$ The same treatment has previously been applied to methylenenorbornadiene and methylenebicyclo[4,2,1]nona-2,4,7-triene; R. W. Hoffmann, R. Schuttler, W. Schafer, and A. Schweig, Angere. Chem. Internat. Edn., 1972, 11, 512; M. T. Reetz, R. W. Hoffmann, W. Schafer, and A. Schweig, ibid., 1973, 12, 81.

4 W. J. Horsley and H. Sternlicht, J. Amer. Chem. Soc., 1968, 90, 3738.
${ }^{5}$ H. H. Jaffe and M. Orchin, 'Theory and Applications of Ultraviolet Spectroscopy,' Wiley, New York, 1962.
${ }^{6}$ For a homoaromatic bishomocyclopentadienide anion (6), see J. M. Brown and J. L. Occolowitz, Chem. Comm., 1965, 376; S. Winstein, M. Ogliaruso, M. Sakai, and J. M. Nicholson, J. Amer. Chem. Soc., 1967, 89, 3656.

[^0]: \dagger Present address: Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.

