
4,4-Bis-(π-cyclopentadienyl)-2,2-dimethyl-1-trimethylsilylaza-2-sila-4-titanacyclobutane: a Novel Organometallic Heterocycle

By CHARLES R. BENNETT and DONALD C. BRADLEY*

(Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS)

Summary Titanocene dichloride reacted with lithium bis(trimethylsilyl)amide to give the title compound (I).

THE mixed ligand complexes $Ti(cp)_x(NR_2)_y$ (cp = π -cyclopentadienyl) of titanium(III) and (IV) have been the subject of continuing studies^{1,2} which have revealed some intriguing problems. Thus the dimethylamido-bridged dimers $[(cp)_2-Ti(NMe_2)_2]_2$ and $[(cp)Ti(NMe_2)_2]_2$ are known but (cp)Ti(NMe₂)₃ was preferentially formed under conditions {*e.g.* reaction of $(cp)_2Ti(l_2 + 2LiNMe_2)$ favourable for the formation of $(cp)_2Ti(NMe_2)_2$. Moreover the reaction of $[(cp)_2Ti(NMe_2)_2$ with hexamethyldisilazane gave an intractable mixture of products.² Since the bis(trimethyl-

silyl)amido-group has been shown to stabilise low coordination of transition metals and the lanthanides³ we have attempted to prepare some bis(cyclopentadienyl)titanium bis(trimethylsilyl)amides and now report a remarkable reaction which led to the formation of the novel 4-membered heterocycle (I).

The compound was obtained as a deep-red solid which sublimes at ca. $110^{\circ}/10^{-3}$ mm from the reaction involving (cp)₂TiCl₂ (1 mol) and LiN(SiMe₃)₂ (2 mol) in pentane. Elemental analyses and the mass spectrum showed that the formula was C16H27NSi2Ti. Its i.r. spectrum showed bands characteristic of π -cyclopentadienyl and silylamide ligands but there was no evidence for Ti-H bonds thus ruling out $(cp)_{2}Ti(H)[N(SiMe_{3})_{2}]$. A solution (benzene) molecular weight measurement showed that the compound was monomeric. The ¹H n.m.r. spectrum (C_6D_6/C_6H_6 ref.) which showed no temperature dependence (30° to -80° , in pentane) gave signals at τ 4.08 (10-H 2 π -cp groups); 6.89 (2-H, TiCH₂-Si); and a partially resolved doublet at 9.99and 10.01 (intensities 11:5, SiMe₃ and SiMe₂ respectively). These data are consistent with the formula (I) and were confirmed by ^{13}C n.m.r. spectra (CDCl_3,Me_4Si) {& 113.5 (cp), 71.9 (Ti CH_2Si), 4.32 (NSi Me_3), and 2.05 (N-Si Me_2 -CH₂) from Me₄Si } which clearly resolved the two types of methyl groups and gave reasonable assignments of the four types of carbon-atom environment.

Apart from the novelty of disclosing a 4-membered heterocycle containing four different elements including a transition metal these results are of significance in revealing an unprecedented reaction in which a stable Ti-C σ -bond is formed by deprotonation of a methyl group bound to silicon (*cf.* the deprotonation of the methylene group of CH₂SiMe₃ by Nb and Ta⁴). The mechanism of this reaction has not been elucidated but hexamethyldisilazane was isolated as a product and suggests the following stoicheiometry: (cp)₂TiCl₂ + 2LiN(SiMe₃)₂ \rightarrow (I) + 2LiCl + HN(SiMe₃)₂. Although the compound is essentially diamagnetic, a solution in pentane gave an e.s.r. signal (g = 1.98) showing titanium-nuclear hyperfine coupling which suggests the presence of a trace of a Ti^{III} compound, e.g. possibly $(cp)_2 TiN(SiMe_3)_2.$

We thank Dr. L. Farnell for obtaining the ¹³C spectra, Mr. P. Cook for the mass spectra, and S.R.C. for financial support.

(Received, 15th October 1973; Com. 1415.)

¹ E. C. Alyea, D. C. Bradley, M. F. Lappert, and A. R. Sanger, Chem. Comm., 1969, 1064; D. C. Bradley and A. H. Kasenally,

⁴ E. C. Alyea, D. C. Bradley, M. F. Lappert, and A. R. Sanger, *Chem. Comm.*, 1909, 1004, D. C. Bradley and A. H. Kasenany, *ibid.*, 1968, 1430.
^a M. F. Lappert and A. R. Sanger, *J. Chem. Soc.* (A), 1971, 874; 1971, 1314.
^b E. C. Alyea, D. C. Bradley, and R. G. Copperthwaite, *J.C.S. Dalton*, 1972, 1580; D. C. Bradley, J. S. Ghotra, and F. A. Hart, *ibid.*, 1973, 1021.

⁴ W. Mowat and G. Wilkinson, J.C.S. Dalton, 1973, 1120.