
2-(2-Imidazolyl)acetophenones via Aroylation of N-Substituted 2-Methylimidazoles

By LEONARDUS A. M. BASTIAANSEN, ANTONIUS A. MACCO, and ERIK F. GODEFROI* (Department of Organic Chemistry, University of Technology, Eindhoven, The Netherlands)

Summary N-Substituted 2-methylimidazoles, on treatment with aroyl chlorides in MeCN-Et₃N, are transformed into (2a-f) in a simple, high yield process; hydrolysis thereof produces the title compounds (3a-f).

RECENT studies¹ have shown N-substituted imidazoles to react with benzoyl chloride in MeCN-Et₃N furnishing 2-benzoylated derivatives. Our interest in the electrophilic substitution pattern of 1,2-disubstituted imidazoles² prompted examination of the behaviour of the latter with various benzoyl chlorides under comparable conditions.

Compound (1) in MeCN-Et_aN was treated dropwise with 1 mol. equiv. of benzovl chloride at $5-25^{\circ}$ for 2-4 h; addition of water and ether afforded in ca. 90% yield (based on halide) compound (2a): ν_{max} 1730 (C=O), 1660

(C=C), and 1240 cm⁻¹ (C-O-C); δ (CDCl₃) 8.40-8.15 (m, 2H, ArH), 7.70-6.80 (m, 15H, ArH), 6.67 (s, 1H, CH=C) and 5.17 (s, 2H, CH₂Ph). Use of 0.5 mol. equiv. of the imidazole or conducting the reaction in dimethylformamide did not influence the yield; the use of dimethyl sulphoxide, though, did lower it to 30%.

The method appears to be general. Substituted benzoyl chlorides with (1) in Et₃N-containing MeCN gave (2b-e)in excellent yields; apparently variations in the C=Oelectrophilicity affect neither the course nor the yield of the reaction. Compound (2f) under these conditions, was

			TADLE			
Comp.	Xa	M.p. °C	Yield (%) ^b	Comp.	Xa	M.p. °C
(2a) (2b) (2c) (2d) (2e) (2f) ^d	H Me NO ₂ Cl OMe H	146 156 ca. 163° 152 170 140	97 80 95 93 80 93	(3a) (3b) (3c) (3d) (3e) (3f) ^d	H Me NO ₂ Cl OMe H	$204^{\circ} \\ 89 \\ 110 \\ 92 \\ 109 \\ 101$

TARTE

^a para-Substituents. ^b Based on crude product, with m.p. slightly below that of the analytical material. e HCl salt. ^d 2-(1-methylimidazolyl) derivative.

formed from 1,2-dimethylimidazole. All enol esters were characterized by combustion analyses and n.m.r. and i.r. data ($v_{C=0}$ 1730—1740 cm⁻¹). Compounds (2a—f) were hydrolysed with refluxing 3N-HCl (1-3h) to furnish the phenacylimidazoles (3a-f),

Formation of (2a-f) is surprising as, to our knowledge, nonactivated 2-methyl substituents in N-substituted imidazoles are reluctant to partake in electrophilic processes. 1,2-Dimethylimidazole, for example, undergoes both lithiation³ and hydroxymethylation² at C-5. Compounds (**2a**—**f**) are most probably formed *via* an irreversible O-aroylation of anionic intermediates formed from (3a-f) thus displacing all prior equilibria in favour of the final conjugated system. Our observation that (3a), on treatment with benzoyl chloride in MeCN-Et₃N, is converted into (2a) substantiates this view.

We thank B.A.S.F., Ludwigshafen, W. Germany, for samples of compound (1) and 1,2-dimethylimidazole.

(Received, 5th July 1973; Com. 964.)

¹ E. Regel and K. H. Buechel, Ger. Offen. 1,926,206/1970 (Chem. Abs., 1971, 74, 31,754f); Ger. Offen. 1,956,711/1971 (Chem. Abs., 1971, 75, 49,086v); C. G. Begg, M. R. Grimmett, and Lee Yu-Man, Austral. J. Chem., 1973, 26, 415.

² E. F. Godefroi, H. J. J. Loozen, and J. Th. J. Luderer-Platje, *Rec. Trav. chim.*, 1972, 91, 1333.
³ B. Tertov, V. V. Burykin, and I. D. Sadekov, *Khim. geterotsikl. Sozdinenii*, 1969, 520 (*Chem. Abs.*, 1969, 71, 12,4328y).