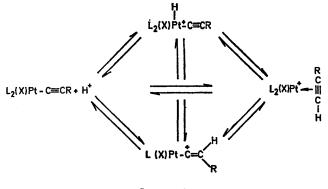

Reactions of Propynylplatinum(II) Compounds

By MALCOLM H. CHISHOLM* and DAVID A. COUCH

(Department of Chemistry, Princeton University, Princeton, New Jersey 08540)

- Summary The alkynylplatinum(II) compounds trans-Pt-($C \equiv CR$)₂L₂ and trans-PtCl($C \equiv CR$)L₂ (R = Me or CF₃; L=PMe₂Ph) show interesting chemistry based on reaction at either the organic or inorganic site of unsaturation; a new synthesis of alkoxy-carbene ligands and evidence for platinum-stabilized carbonium ion intermediates are reported.
- THE reactions of protic acids, HX, with trans-Pt(C =CR)₂L₂ assignment is based on ¹H n.m.r. data.[†] Similar reactions [†] CD₂Cl₂ solution, Me₄Si internal reference: for PtCCl=C(Me)H δ (=CH) for Cl, Me trans, 6.02; ^{*}J_{HH} 7.4, ⁴J_{FH} 2.0, ^{*}J_{FtH} 90.0 Hz; δ (=CH) for Cl, Me cis, 5.11 ^{*}J_{HH} 6.8, ⁴J_{FH} 1.6, ^{*}J_{FtH} 45.0 Hz.


and trans-PtCl(C \equiv CR)L₂ (R = Me or CF₃; L = PMe₂Ph) depends on X, R, and the solvent (see Scheme 1). Thus, e.g., anhydrous HCl (1 mol. equiv.) reacts almost quantitatively with trans-PtCl(C \equiv CMe)L₂ to give: (i) cis- and trans-PtCl₂L₂ in CH₂Cl₂; (ii) trans-PtCl[CCl=C(H)Me]L₂ in tetrahydrofuran (THF); and (iii) trans-PtCl(COEt)L₂ in methanol. cis-trans-Addition to the triple bond {leading to PtCl[CCl=C(H)Me]L₂} occurs in the ratio 3:2. This assignment is based on ¹H n.m.r. data.[†] Similar reactions (=CH) for Cl, Me trans, 6·02; ³J_{HH} 7·4, ⁴J_{PH} 2·0, ³J_{PtH} 90·0 Hz;

 $R^1 = Me; R^2 = Me, Et, Pr^n, Pr^i, L^1 = PMe_2Ph; L^2 = 2-oxacyclopentylidene, CO, py, MeCN, and allene (cf. ref. 4).$

SCHEME 1. Some reactions of propynylplatinum(II) compounds. Satisfactory analytical data were obtained for all complexes.

occur with CF₃CO₂H; in CH₂Cl₂, addition to the acetylenic triple bond and propyne elimination are competing reactions, whilst in MeOH, alkoxy-carbene formation, trans-[PtCl{C(OMe)Et}L₂]+ [O₂CCF₃]⁻, followed by slow conversion into the propionyl platinum complex trans- $PtCl(COEt)L_2$, with elimination of CF_3CO_2Me , is observed. Protic acids HX, where X^- is non-nucleophilic and hence inert to this type of alkylation, e.g. PF_6^- , react with trans- $Pt(C \equiv CMe)_{2}L_{2}$ and trans- $PtCl(C \equiv CMe)L_{2}$ in alcohols ROH to yield stable alkoxycarbene complexes, trans-[PtC =CMe- $\{C(OR)Et\}L_2\}^+$ X⁻ and trans- $[PtCl\{C(OR)Et\}L_2]^+$ X⁻, respectively (R = Me, Et, Pr^n , and Pr^i). Addition of LiCl (1 mol. equiv.) to an acetone solution of trans-[PtCl{C(OMe)-Et L_2]+ PF₆- gives trans-PtCl(COEt)L₂, MeCl, and LiPF₆. Thus we believe that in the reaction of trans-PtCl(C =CMe)L₂ with HCl in MeOH the propionyl complex trans- $PtCl(COEt)L_2$ is formed via an unstable carbene complex, trans-[PtCl{C(OMe)Et}L₂]+ Cl⁻, which readily eliminates

SCHEME 2

MeCl. A catalytic amount of HPF₆ reacts with trans-PtCl(C \equiv CMe)L₂ in water to yield trans-PtCl(COEt)L₂, presumably via an unstable hydroxy-carbene complex,¹ trans-[PtCl{C(OH)Et}L₂]⁺ PF₆⁻, which is readily deprotonated by the solvent. In contrast to the above reactions, the trifluoropropynyl complex trans-Pt(C \equiv CCF₃)₂L₂ reacts with anhydrous HCl in CH₂Cl₂ to yield only vinylic products arising from addition to the triple bond;² we observe no reaction with 1 mol. equiv. of either HCl or HPF₆ in MeOH.

Alcoholic protonation of a metal-alkynyl complex offers a new and probably quite general route to alkoxy-carbene complexes.³ Since protonation-deprotonation may occur rapidly in the above reactions (especially in solvents such as THF and MeOH), the initial or preferential site of protonation (*i.e.* platinum or the acetylenic triple bond) is uncertain. Thus for alkoxy-carbene formation, any of the reactions shown in Scheme 2 leading to the platinumstabilized vinyl cation $PtC^+=C(H)Me$ could be operative. These findings complement earlier work⁴ which showed that terminal acetylenes co-ordinated to organoplatinum cations gave alkoxy-carbene ligands in MeOH and EtOH and acetylides in other solvents such as THF.

PtCl(C =Me)L₂ very rapidly reacts with 1 mol. equiv. each of Cl₂, Br₂, and I₂ in dichloromethane at room temperature. The mode of reaction differs for each halogen: I₂ gives the oxidative-addition product *trans*-PtCl(I)₂(C =CMe)L₂; Br₂ reacts exclusively by addition to the triple bond giving *trans*-PtCl[CBr=C(Br)Me]L; whilst for Cl₂ the reaction is more complex and leads to a mixture of products which include some unchanged PtCl(C =CMe)L₂.

We thank Mathey-Bishop, Inc., for a loan of platinum.

(Received, 1st October 1973; Com. 1364.)

[‡] The reaction tran-[PtCl{C(OMe)Et}L₂]⁺[CF₃CO₂]⁻ → trans-PtCl(COEt)L₂ + CF₃CO₂Me in dichloromethane is readily followed by n.m.r. spectroscopy. § We observe only one vinylic isomer which we believe corresponds to trans-addition to the propynyl ligand: for PtCBr = C(Br)Me,

δ(Me) for Br, Br trans 2.07; *J*_{PH} 2.4 Hz, *J*_{PtH} 15 Hz. ¹ M. L. H. Green, L. C. Mitchard, and M. G. Swanwick, *J. Chem. Soc.* (*A*), 1971, 794; J. R. Moss, M. Green, and F. G. A. Stone,

J.C.S. Dalton, 1973, 975. ² A similar observation for L = PEt₃ has been reported: M. I. Bruce, D. A. Harbourne, F. Waugh, and F. G. A. Stone, J. Chem. Soc. (A) 1968, 356.

(A), 1968, 356.
⁸ (a) F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 1972, 16, 487; (b) D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 1972, 72, 545; Chem. Soc. Rev., 1973, 2, 99.

⁴ M. H. Chisholm and H. C. Clark, Accounts Chem. Res., 1973, 6, 202.