Characterisation of an Intermediate in the Oxidation of a Tin(in) Carboxylate. An Example of a Pentagonal Pyramidal Six-co-ordinate Tin(iI) Atom

By Paul F. R. Ewings, Philip G. Harrison,* Trevor J. King, and Alan Morris
(Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD)

Summary The compound $\mathrm{Sn}_{2}\left(\mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-\mathrm{o}\right)_{4} \mathrm{O}, \mathrm{THF}$ is polymeric, consisting of octahedrally co-ordinated tin(iv) atoms connected by carboxylate bridges to tin(iI) atoms which are also six-co-ordinate, but having a pentagonal pyramidal geometry.

We have previously noted the ease with which derivatives of bivalent tin are oxidised. ${ }^{1}$ The products of such oxidation, however, have so far not been identified. Dehnicke has synthesised $\operatorname{tin}(\mathrm{Iv})$ dihalide oxides, $\mathrm{SnX}_{2} \mathrm{O}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, Br, I), by the thermal decomposition of $\mathrm{SnF}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ or the reaction of $\mathrm{Cl}_{2} \mathrm{O}$ or ozone with $\mathrm{SnX}_{4}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, which may be regarded as the ultimate result of the oxidation of
tin(II) halides. ${ }^{2}$ These compounds are considered to be polymeric with $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ chains. ${ }^{3}$ We report on the constitution of a partial oxidation product of tin (II) bis-(o-nitrobenzoate) (I), the first characterised intermediate in the oxidation of a tin (II) compound.
Crystals of the composition $\mathrm{Sn}_{2}\left(\mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-0\right)_{4} \mathrm{O}, \mathrm{THF}$, obtained from the molecular oxygen oxidation of (I) in THF-benzene, are monoclinic, space group $P 2_{1} / c, a=$ $13 \cdot 426, b=14 \cdot 666, c=22.029 \AA, \beta=111.51^{\circ}, Z=4.2138$ independent reflections ($\mathrm{Cu}-K_{\alpha}$ radiation) were collected using a Hilger-Watt four-circle diffractometer. The positions of the tin atoms were located from the three-dimentional Patterson function, and the structure refined by
successive Fourier syntheses. The conventional ' R ' factor is now 6.74, and refinement is continuing. The structure consists of a three-dimensional polymeric network (see Figure), with one tin atom being in the +4 oxidation state, and the other in the +2 state, all metal atoms in each oxidation state being equivalent.

All carboxylate residues connect the $\operatorname{tin}(\mathrm{II})$ atoms to the

tin(Iv) atoms, whilst two oxygen atoms bridge two tin(iv) atoms forming a lozenge-shaped distannoxane ring $[r(\mathrm{Sn}-\mathrm{O})$ $\left.=2.03,2.07 \AA ; \angle \mathrm{O}-\mathrm{Sn}-\mathrm{O}=80^{\circ}\right]$. Oxygen atoms from carboxylate residues make up a slightly distorted octahedron about each tin(Iv) atom. The co-ordination about the tin (II) atoms is extremely unusual, being the first example of pentagonal pyramidal co-ordination at tin. The five equatorial positions are occupied by oxygen atoms from four carboxylate groups and the solvating THF molecule $[r(\mathrm{Sn}-\mathrm{O})=2 \cdot 40-2.59 \AA]$ in an almost planar arrangement (sum of the angles subtended at tin $=356^{\circ}$). Six-co-ordination at the tin (II) atom is completed by co-ordination of a distannoxane ring oxygen via an axial site $[r(\mathrm{Sn}-\mathrm{O})=2 \cdot 12 \AA]$. By inference, therefore, the tin(II) lone pair of electrons is located in the remaining axial position. This compound represents only the second example of such geometry (the complex trisoxalato-antimoniate anion $\left[\mathrm{Sb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ has a similar structure). ${ }^{4}$ In all other known examples of six-co-ordination at $\operatorname{tin}(\mathrm{II})^{5}$ the lone pairs apparently occupy equatorial positions.

We thank the S.R.C. and Albright \& Wilson for support.
(Received, 8th November 1973; Com. 1544.)
${ }^{1}$ P. G. Harrison and S. R. Stobart, Inovg. Chim. Acta, 1973, 6, 306; and refs. therein.
${ }^{2}$ K. Dehnicke, Z. anorg. Chem., 1961, 308, 72; 1965, 338, 279 ; Chem. Ber., 1965, 98, 280, 290.
${ }^{3}$ H. S. Cheng and R. H. Herber, Inorg. Chem., 1971, 10, 1315.
${ }^{5}$ F. P. van Remoortere, J. J. Flynn, F. P. Boer, and P. P. North, Inorg. Chem., 1971, 10, 1511 ; K. G. Shields, R. C. Seccombe, and
C. H. L. Kennard, J.C.S. Dalton, 1973, 741.

