Molecular Structures of Dicyclopentadienylmagnesium and Dicyclopentadienylchromium by Gas-phase Electron Diffraction

By ARNE HAALAND,* JANUSZ LUSZTYK, and DAVID P. NOVAK (Department of Chemistry, University of Oslo, Blindern, Oslo 3, Norway)

JON BRUNVOLL

(Institute of Theoretical Chemistry, Technical University of Norway, N-7034, Tronheim, Norway)

and KAZIMIR B. STAROWIEYSKI

(Institute of Organic Chemistry and Technology, Technical University, Warsaw, Poland)

Summary The molecular structures of $(C_5H_5)_2Mg$ and $(C_5H_5)_2Cr$ have been determined by gas-phase electron diffraction; the C-H bonds in $(C_5H_5)_2Cr$ are bent $2\cdot9(1\cdot1)^\circ$ out of the plane of the C_5 ring towards the metal atom.

The electron scattering pattern from gaseous $(C_{\rm s}H_{\rm s})_{\rm s}Mg$ from s = 1.25 to 31.00 Å⁻¹ was recorded with a nozzle temperature of *ca.* 125° ; the scattering pattern from $(C_{\rm s}H_{\rm s})_{\rm s}Cr$ was recorded from s = 1.50 to 30.00 Å⁻¹ with a nozzle temperature of *ca.* 145° .

Least-squares refinements¹ were carried out on both eclipsed (D_{5h}) and staggered (D_{5d}) models. Both models are characterized by four independent parameters, *e.g.* the C-H, C-C, and M-C bond distances and the angle, \angle (C₅,H), between the C-H bonds and the C₅ plane. This angle is defined as positive when the C-H bonds are bent *towards* the metal atom. Perpendicular amplitude corrections were calculated from a molecular force-field, and the refinements carried out under the constraints of a geometrically consistent r_{α} -structure. Ten vibrational amplitudes were

refined; the remaining $C \cdots H$ and $H \cdots H$ amplitudes were fixed at the values calculated from the molecular force-fields.

For both molecules better agreement was obtained with the eclipsed than with the staggered models. For $(C_6H_6)_2Cr$, R_3 was 11.95 for the staggered model and 11.49 for the eclipsed model.¹ For $(C_5H_5)_2Mg$ the corresponding values were 8.59 and 8.23 respectively. Hence an eclipsed equilibrium conformation is probable for both molecules, but we do not feel that a staggered equilibrium conformation can be ruled out. In any event the large vibrational amplitudes (ca. 0.2 Å) obtained for the distances between atoms in different C_5H_5 rings indicate that the barriers to internal rotation are less than the thermal energy available, 0.8 kcal mol⁻¹.

The bond distances (r_{a}) and their estimated standard deviations obtained by refinement on the eclipsed models are given in the Table. While no significant deviation from planarity is found for the $C_{5}H_{5}$ rings in $(C_{5}H_{5})_{2}Mg$, the C-H bonds in $(C_{5}H_{5})_{2}Cr$ are bent 2.9° out of the plane of the C_{5}

	TABLE	
С-Н С-С	(C ₅ H ₅) ₂ Mg 1·116(7) Å 1·423(2) Å	(C ₅ H ₅) ₂ Cr 1·108(7) Å 1·431(2) Å 2·169(4) Å
MC ħª ∠(C₅,H)	2·339(4) Å 2·008(4) Å —1·0(1·6)°	2·169(4) A 1·798(4) Å 2·9(1·1)°

 ${}^{\mathbf{a}}$ The distance from the metal atom to the centre of the $C_{\mathbf{5}}$ rings.

ring towards the Cr atom. This deviation is significant at the 2% level.

Several years ago Bohn and Haaland in a gas-phase electron diffraction investigation of $(C_5H_5)_2$ Fe found that the value obtained for the Fe \cdots H distance was 0.054(11) Å smaller than the distance calculated under the assumption that the H atoms lie in the plane of the C_5 ring.² This corresponds to an angle \angle (C₅,H) = 4.6(0.9)°. However, since shrinkage had been neglected, the authors concluded that the result should be taken as an indication rather than a

demonstration of nonplanarity. Recently the perpendicular amplitude corrections have been calculated from a molecular force-field by Schäfer and his co-workers.³ These coefficients lead to a calculated shrinkage of the Fe · · · H distance of only 0.010 Å. The angle \angle (C₅,H) corrected for shrinkage is then $3.7(0.9)^{\circ}$.

In $(C_5H_5)_2$ Be the metal atom is situated on the five-fold symmetry axis of the molecule, but closer to one ring than to the other, the perpendicular distances being 1.47 and 1.90 Å respectively. No indication is found for a similar asymmetry in (C5H5)2Mg. The Mg-C vibrational amplitude obtained by refinement on a symmetrical model, l(Mg-C) 0.103(3) Å, is unexceptional.

We are grateful to Professor E. O. Fischer for the sample of $(C_{5}H_{5})_{2}Cr$.

(Received, 2nd November 1973; Com. 1509.)

- ¹ H. M. Seip, T. G. Strand, and R. Stölevik, Chem. Phys. Letters, 1969, 3, 617.
- ² R. K. Bohn and A. Haaland, J. Organometallic Chem., 1965, 5, 470.
 ³ L. Schöfer, J. Brunvoll, and S. J. Cyvin, J. Mol. Struct., 1972, 11, 459.
 ⁴ A. Haaland, Acta Chem. Scand., 1968, 22, 3030.