Correlation Between Hydrogen-bond Shift in Nuclear Magnetic Resonance Spectra and Change in Enthalpy

By KIM F. WONG, TECK S. PANG, and SOON, NG*

(Department of Chemistry, University of Malaya, Kuala Lampur, Malaysia)

Summary If the proton donor is kept fixed the hydrogenbond shift in the n.m.r. spectrum, $\Delta\delta$, correlates with the enthalpy change, ΔH , for minor structural changes in the proton acceptor.

IN hydrogen-bond formation the hydrogen-bond shift in the n.m.r. spectrum, $\Delta\delta$, is defined as the chemical shift of the bonded proton in the complex relative to the chemical shift of the free proton in the monomer.¹ For a constant

where K is the equilibrium constant and Δ is the chemical shift of the proton in the base-cyclohexane system relative to that of the proton in neat cyclohexane at the same temperature.

The temperature dependence of $\Delta\delta$ gives good linear fit. The results in the Table show that for the same proton donor and a series of closely related bases the $\Delta\delta$ values correlate with the ΔH values. The correlation is remarkably good for the chloroform-ether systems. With the

TABLE. Temperature dependence of $\Delta\delta$ and correlation between $\Delta\delta$ and ΔH for hydrogen bonding of chloroform with various bases in cyclohexane at 60 MHz.

Base		$\Delta \delta^{\mathbf{a}} = f(t)^{\mathbf{b}}$	Δδ ^a (34°C)	$-\Delta H^{\mathbf{c}}$	$-\Delta\delta/\Delta H^{d}$ (34°C)
Di-isopropyl ether		-0.0836t + 65.5	63	14.2	4.4
Tetrahydrofuran		-0.0810t + 53.2	50	10.8	4.6
Tetrahydropyran		-0.0875t + 49.4	48	11.2	4.3
NN-Dimethylcyclohexylamine		-0.267t + 100.9	92	13.0	7.1
Tri-n-propylamine	••	-0.180t + 101.3	95	13.6	7.0
Triethylamine	••	-0.138t + 109.9	96	16.1	6.0
Diethylmethylamine	••	-0.135t + 95.7	91	16.4	5.5

^a Hz at 60 MHz; maximum uncertainty = ± 1.5 Hz. ^b In f(t), t is in °C; linear correlation coefficient ρ is 0.960—0.998. ^c ΔH kJ mol⁻¹; maximum uncertainty = 0.6 kJ mol⁻¹. ^d Hz mol kJ⁻¹ at 60 MHz; uncertainty = \pm 0.4 Hz mol kJ⁻¹ at 60 MHz.

minimum concentration of the proton donor, dependence of the proton shift, Δ , on the molar concentration of the base, for $[B] \gg [$ proton donor], is given by² equation (1)

$$\frac{1}{\Delta} = \frac{1}{\Delta\delta} + \frac{1}{\Delta\delta \ K \ [B]} \tag{1}$$

amines the correlation appears to be dependent on the degree of steric hindrance to the approach of the chloroform molecule to the electron-donor site. In NN-dimethylcyclo-hexylamine and tri-n-propylamine the donor sites are more hindered than in triethylamine and diethylmethylamine, so that the ΔH values are considerably smaller and the temperature variation of $\Delta\delta$ greater for the more hindered

amines. The ratio of $\Delta\delta$ to ΔH is therefore greater for the more hindered amine.

This correlation of $\Delta\delta$ with ΔH parallels the i.r. frequency shift Δv correlation with ΔH^3 A correlation between $\Delta \delta$ and ΔH has been reported for hexafluoropropan-2-ol and various bases.4

(Received, 22nd October 1973; Com. 1460.)

¹ P. J. Berkeley, jun. and M. W. Hanna, *J. Phys. Chem.*, 1963, 67, 846. ² I. D. Kuntz, jun. and M. D. Johnston, jun., *J. Amer. Chem. Soc.*, 1967, 89, 6008; T. S. Pang and Soon Ng, Spectrochim. Acta, 1973, 29A, 207. ⁸ A. S. N. Murthy and C. N. R. Rao, Appl. Spectroscopy Rev., 1968, 2, 84; G. C. Pimentel and A. L. McClellan, Ann. Rev. Phys.

Chem., 1971, 22, 369. ⁴ K. F. Purcell, J. A. Stikeleather, and S. D. Brunk, J. Amer. Chem. Soc., 1969, 91, 4019.