Low-temperature Catalytic Reduction of Nitric Oxide by Carbon Monoxide on SnO₂-CuO Gels

By MARTIN J. FULLER* and MALCOLM E. WARWICK

(Tin Research Institute, Fraser Road, Greenford, Middlesex UB6 7AQ)

Summary After thermal activation at 450°, coprecipitated SnO₂-CuO gels, particularly those having a Cu:Sn atomic ratio of between 0.5:1 and 0.6:1, show high activity and high selectivity for N₂ formation at low temperature (150°) in the catalytic reduction of NO with CO compared with a commercial barium-promoted copper chromite catalyst (Girdler G-22).

THE low-temperature catalytic reduction of NO to N₂O and, more importantly, N_2 has been extensively studied with a view to automobile exhaust purification. Comparative studies^{1,2} of laboratory-prepared and commercial catalysts, including promoted and supported oxides and supported metals (e.g. Ni, Pt, Ru, Rh) have shown commercial bariumpromoted copper chromite (Girdler Catalyst G-22, Chemetron Corp.) to be the most active catalyst at low temperatures (100-200°). Coprecipitated SnO₂-CuO gels, which we have previously shown to be active low-temperature CO-oxidation catalysts,³ are now shown to be very active catalysts at 150° for the NO-CO reaction, and to exhibit high N_2 selectivity at this temperature.

The Table shows a comparison of the catalytic activities of various batches of SnO₂-CuO gels,³ similarly prepared Al₂O₃-CuO gels, SnO₂ gel,⁴ and commercial barium-promoted copper chromite (granulated Girdler G-22 pellets, nominal composition $23 \cdot 3\%$ Cr, $32 \cdot 6\%$ Cu, $9 \cdot 6\%$ Ba) for the CO-NO reaction at 150°. Each catalyst was pre-activated at 450° , first in air for 3 h, then in argon for 16 h. The product gases were separated and analysed on a Molecular Sieve type 5A column (Perkin-Elmer F 11 gas chromatograph, hot wire detectors, and He carrier gas) at 100° (N₂, NO, and CO) and 350° (N₂O and CO₂). NO conversion data quoted in the Table refer to the reaction after 6 h (essentially steady state), and the quoted specific surface areas refer to the used catalysts.

TABLE.	Reduction, at 150°, of 12-14% NO in CO at flow rate
of 30 cm	³ min ⁻¹ through 36-72 B.S.S. mesh catalysts activated
	at 450°.

	Weight	S ^N BET	% NO conversion		
Catalyst	(g)	$(m^2 g^{-1})$	to \hat{N}_2	to N_2O	Total
SnO ₂ ,0·51-CuO	0.5	109	39	32	71
$SnO_2, 0.52$ -CuO	1.0	90	68	24	92
SnO ₂ ,0.55-CuO	0.5	112	42	3 0	72
Girdler G-22	1.0	40	<1	17	17
Girdler G-22 ^a	1.0	65	14	22	36
SnO,	1.0	30	0	0	0
Al ₂ O ₃ ,0·20-CuO	1.0	250	0	0	0
Al ₂ O ₃ ,0·73-CuO	$1 \cdot 0$	104	0	0	0

^a Pre-reduced in CO at 450° for 16 h.

The inactivity of the SnO₂ and Al₂O₃-CuO gels at 150° illustrates the synergistic effect on catalytic activity of coprecipitating Sn^{IV} and Cu^{II} oxides, previously observed for CO oxidation on SnO₂-CuO gels³ and subsequently to be described in more detail.⁵ As has been previously reported¹ pre-reduction of Girdler Catalyst G-22 was found to enhance its activity, particularly for N2 selectivity, but this is at least partly accounted for by an increase in specific surface area on reduction. It is apparent from the Table that, on both a unit surface area and a unit weight basis, the SnO₂-CuO catalysts have superior activity for the NO-CO reaction and, in particular, a much higher selectivity for reduction to N₂ compared with the Girdler G-22 catalyst.

We thank the International Tin Research Council for permission to publish this work, and Dr. J. W. Price for helpful discussions.

(Received, 9th November 1973; Com. 1545.)

- R. J. Ayen and Yu-Sim Ng, Air & Wat. Pollut. Internat. J., 1966, 10, 1.
 G. L. Bauerle, G. R. Service, and K. Nobe, Ind. and Eng. Chem. (Product Res. and Development), 1972, 11, 54.
 M. J. Fuller and M. E. Warwick, J.C.S. Chem. Comm., 1973, 210.
 M. J. Fuller and M. E. Warwick, J. Catalysis, 1973, 29, 441.
 M. J. Fuller and M. E. Warwick, to be published.