Slow Substitution Reaction of Manganese(II) Ion in Dimethyl Sulphoxide Solution

By DOROTHY M. W. BUCK and PETER MOORE*

(Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL)

Summary The reaction between excess of Mn^{Π} ion and 2,6-(2-pyridyl)pyridine (terpy) in dimethyl sulphoxide solution occurs in two stages; a rapid formation of a binuclear intermediate is followed by a very slow reaction attributed to final chelate ring closure.

It is generally recognised that substitution reactions of Mn^{II} ion are very rapid.¹ Most kinetic studies have been made by relaxation methods such as temperature-jump,² pressure-jump,³ and ultrasonic sound absorption,⁴ although in favourable cases flow studies are possible,⁵ especially in non-aqueous solvents and at reduced temperatures.⁶ In dimethyl sulphoxide a significantly different pattern emerges for the reaction between 2,6-(2-pyridyl)pyridine (terpy, 2.5×10^{-5} — 10^{-4} mol 1⁻¹) and a large excess of Mn^{II} ion (0.02—0.5 mol 1⁻¹).

The reaction was investigated with stopped-flow and Cary 14 spectrophotometers between 292 and 314 K. At 335 nm, an initial very rapid reaction was observed at a rate characteristic of other Mn^{II} substitutions in methanol.⁶ At 292·1 K, $\mu = 0.20$ (NaClO₄), the rate is given by equation (1). A similar rate law has been observed⁷ for the reaction

Rate/(mol
$$l^{-1} s^{-1}$$
) = {(46.1 \pm 0.7)

$$+ (1.64 \pm 0.06) \times 10^{3} [\text{Mn}^{11}] [\text{terpy}]$$
(1)

of $\operatorname{Mn}(\operatorname{dmso})_{6}^{2+}$ with 1,10-phenanthroline [for phen at 291.7 K, $k(\operatorname{formation}) = (7 \cdot 7 \pm 0 \cdot 6) \times 10^3 \, \mathrm{lmol}^{-1} \, \mathrm{s}^{-1}$; $k(\operatorname{dissociation}) = 33 \cdot 7 \pm 1 \cdot 7 \, \mathrm{s}^{-1}$]. The large value of $k(\operatorname{dissociation})$ (= 46·1 s⁻¹) in equation (1) is in marked contrast to the low value for terpy in methanol,⁶ and indicates incomplete chelation in the initial phase. Furthermore, with terpy (but not phen) the initial rapid process was followed by a much slower reaction which was examined by repetitive scan spectrophotometry.† Examination of the slow reaction at 314·1 K gave relationship (2) (k is the observed, pseudo-first-order rate constant). The mechanism shown

$$1/k = (387 \pm 69) + (6.74 \pm 0.67) \times 10^3 \,[{\rm Mn^{II}}]$$
 (2)

in the Scheme is consistent with equations (1) and (2).

With this Scheme the initial rapid reaction involves the formation of the mononuclear intermediate (I¹) which rapidly equilibrates with the binuclear intermediate (I²). From equation (1), $k_1 = (1.64 \pm 0.06) \times 10^3 \, \mathrm{lmol} \, \mathrm{s}^{-1}$, $k_{-1} = 46 \cdot 1 \pm 0.7 \, \mathrm{s}^{-1}$ and the equilibrium constant for the formation of the intermediate (I¹) is $K = 35 \cdot 6 \pm 0.8 \, \mathrm{lmol}^{-1}$; (I¹) then slowly ring closes to give the final product (P). The presence of (I²) is necessary to account for the observed relationship (2); if K_2 is defined as the equilibrium constant associated with the formation of (I²), it can readily be shown that $k = k_3/(1 + K_2[\mathrm{Mn}\Pi])$. Hence a plot of $k^{-1} vs$.

[†] At the highest [Mn^{II}], four isosbestic points were observed between 320 and 360 nm. At 314 K, [Mn^{II}]=0.45 mol l⁻¹, the slow stage was complete in 2–3 h.

[Mn^{II}] should give a straight line from which k_3 and K_2 can be estimated. From equation (2), we find that at 314.1 K, $k_3 = (2.58 \pm 0.46) \times 10^{-3} \,\mathrm{s}^{-1}$, and $K_2 = (17.4 \pm 1.4) \,\mathrm{l}$ mol⁻¹. The value of k_3 is remarkably low (half-life ca. 4.5

 $(I^1) \frac{k_3}{slow}$ (dmso)₃ Mn (terpy)²⁺(P) + dmso

SCHEME. Mechanism of the reaction between excess of $Mn-(dmso)_{6}^{2+}$ and 2,6-(2-pyridyl)pyridine (terpy) in dimethyl sulphoxide (dmso).

min), although we have found evidence for a rate-determining chelate-ring-closure mechanism during the reaction between Ni(dmso)₆²⁺ and 2,2'-bipyridyl in dmso.⁸ The much slower final ring closure of terpy with the more labile Mn^{II} ion presumably arises from the steric strain present in the final product. Terpy is known to bond with all three pyridine rings co-planar,^{19a} and final ring closure will result, therefore, in considerable steric strain. This effect, together with the difficulty of twisting the planar pyridine rings against the bulky co-ordinated dmso molecules⁸ makes ring closure very difficult in this case. The reaction of Ni- $(dmso)_6^{2+}$ with the more flexible ligands 2-pyridylethylamine and 2-pyridylmethylamine is much faster⁷ than with 2,2'-bipyridyl and similar to the rate of reaction with pyridine.^{8,10} It is also noteworthy that a very slow equilibration was observed during the reaction between excess of Ni(dmso)₆²⁺ and terpy in dmso,¹¹ although in this case the spectral changes over a period of 24 h were less marked than those observed for Mn^{II} .

The possibility that the slow reaction of Mn^{II} with terpy might arise from oxidation of the complex, as observed for Mn^{II} hematoporphyrin,¹² was eliminated by careful deoxygenation of our solutions, and by the addition of excess of reducing agent $(0.2 \text{ mol } l^{-1} \text{ hydroxylamine})$ during trial experiments. Equation (2) is also inconsistent with such behaviour.

We thank the S.R.C. for financial support.

(Received, 15th October 1973; Com. 1419.)

¹ M. Eigen and R. G. Wilkins, 'Mechanisms of Inorganic Reactions,' Advances in Chemistry Series, No. 49, American Chemical Society, 1965, p. 55; D. J. Hewkin and R. H. Prince, Co-ordination Chem. Rev., 1970, 5, 45; C. H. Langford and V. S. Sastri, M.T.P.

³ G. Macri and S. Petrucci, Inorg. Chem., 1970, 9, 1009. F. Dickert, P. Fisher, H. Hoffmann, and G. Platz, J.C.S. Chem. Comm., 1970, 9, 1072,

1972, 106.

⁴ L. G. Jackopin and E. Yeager, J. Phys. Chem., 1970, 74, 3766. ⁵ R. Holyer, C. D. Hubbard, S. F. A. Kettle, and R. G. Wilkins, Inorg. Chem., 1966, 5, 622; 1965, 4, 929.

⁶ D. J. Benton and P. Moore, J.C.S. Dalton, 1973, 399.

7 D. M. W. Buck and P. Moore, unpublished results.

⁸ D. M. W. Buck and P. Moore, J.C.S. Dalton, 1973, 1602.
 ⁹ W. R. McWhinnie and J. D. Miller, Adr. Inorg. Chem. Radiochem., 1969, 12, 135.

¹⁰ P. K. Chattopadhyay and J. F. Coetzee, Inorg. Chem., 1973, 12, 113.

- ¹¹ P. A. Cock, C. E. Cottrell, and R. K. Boyd, *Canad. J. Chem.*, 1972, 50, 402.
 ¹² D. A. Brisbin and R. J. Balahura, *Canad. J. Chem.*, 1968, 46, 3431.