Phosphorus-31 Hyperfine Coupling in Tetraphenylporphyrincobalt(II) Complexes of Trivalent Phosphorus Ligands and Dioxygen Complexes: Substituent Effects on the Phosphorus σ-Donor Orbital

By BRADFORD B. WAYLAND* and MERVAT E. ABD-ELMAGEED

(E. F. Smith Laboratory of Chemistry and the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19174)

Summary Phosphorus-31 hyperfine splittings in tetraphenylporphyrincobalt(II) complexes with Et₃P and (EtO)₃P and the corresponding dioxygen complexes are used in evaluating the influence of substituents on the nature of the phosphorus σ -donor orbital. TETRAPHENYLPORPHYRINCOBALT(II) forms 1:1 complexes with trivalent phosphorus donors. E.s.r. spectra for these adducts indicate an axially symmetric g tensor and are only consistent with $(dxz,yz)^4(dxy)^2(dz^2)^1$ ground configuration (Figure and Table). The g_{II} and g_{\perp} transitions are TABLE. E.s.r. parameters and derived spin densities for $Co^{II}(tpp)$ complexes of $P(Et)_3$ and $P(OEt)_3$

Complex P(Et) ₈	gn 2·02	<i>8</i> ⊥ 2·24	A_{II} (⁵⁹ Co) /cm ⁻¹ (G) 0.0063 (67)	$A_{\perp}(^{59}Co) / cm^{-1}(G) 0.00285 (27)$	$a_{\rm il}({}^{31}{ m P}) / { m cm}^{-1}(G) \ 0.02185 \ (232)$	$a_{\perp}(^{s_1}\mathrm{P}) / \mathrm{cm}^{-1}(G) \ 0.01757 \ (168)$	<a>^{\$1}P ^a /cm⁻¹ 0.01899	ԲԻ _{ઢ՞} Ե 0∙0559	ԲԻ _{3⊅} Ե 0·1488	¢/s ° 2·661
P(OEt) ₈	2.02	2.24	0·0067 (71)	0·00293 (28)	0·02914 (308)	0·0268 (256)	0.02757	0.0811	0.0816	1.006

 $a < a > = (a_{\parallel} + 2 a_{\perp})/3$. ρP_{3e} and ρP_{3p} are the spin densities in phosphorous 3s and 3p atomic orbitals.

$$PP_{3s} = \frac{a_{180}}{a_{3s}^*}, PP_{3p} = \frac{a_{1l} - a_{180}}{a_{3p}^*}$$

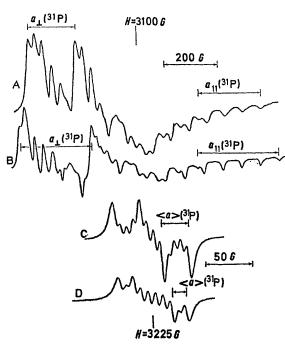
 $a_{3s}^* = 0.33963 \text{ cm}^{-1}(3640G)$ and $a_{3s}^* = 0.01922 \text{ cm}^{-1}(206G)$ are the atomic hyperfine coupling constants. Catio of p/s character in the phosphorus donor orbital.

split into two components by ³¹P $(I = \frac{1}{2})$ hyperfine coupling and each of these components is further split into eight components by ⁵⁹Co (I = 7/2). Sigma bonding of the phosphorus ligands with Co(tpp) mixes the cobalt dz^2 with the ligand σ -donor orbital. This places spin density directly

a11(31P 50*6* H=3225G FIGURE. E.s.r. spectra for $Co(tpp)L[L=Et_3P, (EtO)_3P]$ complexes in frozen toluene (-140 °C) and the corresponding dioxygen ad-In nozen contene (-140°C) and the corresponding dioxygen adducts in toluene solution (-60°C). A: Co(tpp)PEt₃. B: Co-(tpp)P(OEt)₃. C: Co(tpp)P(OEt)₃·O₂ < g > $= 2\cdot023$, $< A^{56}Co > = 0\cdot00667$ cm⁻¹ (7:2G) < $a > ^{31}P = 0\cdot00271$ (28:8G). D: Co(tpp)P-(Et)₃·O₂, < g > $= 2\cdot023 < A^{59}Co > = 0\cdot00074$ cm⁻¹ (7:8G), < $a > ^{31}P = 0\cdot00148$ (15:7G).

in the phosphorus σ -donor orbital which results in large ³¹P hyperfine splitting. Phosphorus-31 coupling in the g_{\parallel} region is substantially larger than in the g_1 region which is characteristic of an axially symmetric species with the g and ligand hyperfine tensors virtually coincident. Phosphorus 3s and 3p spin densities in the ligand σ -donor orbital are calculated from the observed coupling constants and the known atomic hyperfine values¹ (Table).

The experimentally determined fraction of phosphorus 3s character in the σ -donor orbitals of Et_aP and (Et_aO)_aP of 0.27 and 0.50 show that the effective hybridization is very sensitive to the substituents. The more electronegative ethoxide substituent when compared to ethyl utilizes a larger fraction of the available 3p phosphorus orbitals in bonding and thus the σ -donor orbital for (EtO)_aP has substantially larger phosphorus 3s character than Et₃P. SCF calculations² for $(Me)_3P$ and F_3P show the proper trends in donor orbitals P3s character with substituent electronegativity, but may underestimate the actual value. The donor orbital s character for co-ordinated Et_3P (0.27) is substantially larger than the value found for the cation radical $[Et_3P]^+$ $(0.10)^3$ which probably reflects a large structural and electronic rearrangement accompanying ionisation. Introduction of spin density into the phosphorus ligand orbitals by co-ordination where the ligand structure is little affected represents a relatively small perturbation and provides a better description of the σ -donor orbital in the neutral ligand. The larger total phosphorus spin density for EtaP (0.20) compared to (EtO)₃P (0.16) probably reflects improved orbital overlap and energy matching with the cobalt dz^2 as the donor orbital p character increases (Table). The large substituent effects on the phosphorus donor orbital s and p character has wide implications in the interpretation of ³¹P n.m.r. coupling constants,⁴ metal-phosphorus bond distances,⁵ and vibrational spectra⁶ for metallo-phosphine complexes.


Complexes of Co(tpp) with Et₃P and (EtO)₃P are found to form 1:1 dioxygen adducts. Phosphorus-31 hyperfine splitting is observed for these complexes and demonstrates that the phosphorus ligand remains co-ordinated in the oxygen adduct in solution and glass media (Figure). Previous e.s.r. studies of cobalt(II) dioxygen complexes have placed the odd electron in a predominantly oxygen π^* MO,⁷ and the relatively small ³¹P hyperfine splitting is consistent with this assignment.

The authors acknowledge support of the National Science Foundation.

(Received, 17th September 1973; Com. 1286.)

- ¹ P. W. Atkins and M. C. R. Symons, 'The Structure of Inorganic Radicals,' Elsevier, Amsterdam, 1967.

- ¹ P. W. Atkins and M. C. R. Symons, The Structure of Inorganic Reductes, Encoded, Innormal, 1997.
 ² I. H. Hillier and V. R. Saunders, Chem. Comm., 1970, 316.
 ³ A. Begum, A. R. Lyons, and M. C. R. Symons, J. Chem. Soc. (A), 1971, 2290.
 ⁴ S. O. Grim, D. A. Wheatland, and W. McFarlane, J. Amer. Chem. Soc., 1967, 89, 5573.
 ⁵ H. J. Plastas, J. M. Steward, and S. O. Grim, J. Amer. Chem. Soc., 1969, 91, 4326.
 ⁶ C. A. Tolman, J. Amer. Chem. Soc., 1970, 92, 2953; W. D. Horrocks jun. and R. C. Taylor, Inorg. Chem., 1963, 2, 723.
 ⁷ B. M. Hoffman, D. L. Diemente, and F. Basolo, J. Amer. Chem. Soc., 1970, 92, 61; B. B. Wayland, J. V. Minkiewicz, and M. E. L. Diemente, and F. Basolo, J. Amer. Chem. Soc., 1970, 92, 61; B. B. Wayland, J. V. Minkiewicz, and M. E. Abd-Elmageed, J. Amer. Chem. Soc., in the press.

