Rates of Protonation and Dissociation of Cyanoglycycinamidonickelate(II)

BY VINCENT T. BRICE and GORDON K. PAGENKOPF*

(Department of Chemistry, Montana State University, Bozeman, Montana 59715)

Summary The rate of dissociation of cyanoglycylglycinamidonickelate(II) is 38,000 times slower than that of aquoglycylglycinamidonickelate(II).

GLYCYLGLYCINAMIDE (H₂gga) ionizes its amide protons during the formation of the yellow, diamagnetic, squareplanar complex with nickel(II), Ni(gga)H₂O.¹ Rates of proton transfer to this complex¹ and similar complexes of nickel(II) and copper(II) with triglycine (H₂ggg) [Ni(ggg)⁻ and Cu(ggg)⁻] are much slower than diffusion-controlled reactions.²

We have measured the rate of dissociation of the mixed complex Ni(gga)CN⁻ and found that it is 38,000 times slower than the rate of dissociation for the corresponding aquo-complex Ni(gga)H₂O.¹

The cyanide complex was prepared by mixing nickel(II) with glycylglycinamide (1:2) and slowly adding base to pH 10.5, at which both amide protons have ionized to form

 $Ni(gga)H_2O$. The three nitrogen donors of gga are coordinated and water occupies the fourth position in the square-planar co-ordination sphere of nickel. A stoicheio-

metric amount of cyanide was then added to form Ni(gga)-CN⁻. Excess of cyanide causes decomposition to Ni-(CN)₄^{2-.3} The structure of the complex is believed to be (I). The cyanide complex has λ_{max} 405 nm (ϵ 170) [cf. λ_{max} 452 nm (ϵ 136) for the aquo-complex, Ni(gga)H₂O]. These complexes are weak acids, pK_a ca. 9. Attempts to determine the stability of the mixed complex were unsuccessful and we conclude that the stability constant must be greater than 107.

Kinetic studies used the pH-jump method, which involves the rapid conventional mixing of a solution of the complex (pH ca. 10) with a buffer of desired pH. The buffer solution has to have sufficient buffer-capacity to maintain constant pH throughout the reaction; we used acetate, malonate, and trishydroxymethylaminomethane. A typical kinetic run had $[Ni(gga)CN^{-}] = 7.0 \times 10^{-6}$ M, $\mu = 0.1$ M (NaClO₄), [Buffer] = 0.01 M and T = 25°. Disappearance of the complex was monitored at 246 nm. The decomposition was studied at a number of pH values and the results are shown in the Figure. Pseudo-first order kinetics were observed and the rate equation is shown in equation (1). A two-term rate equation has been

 $-d[\mathrm{Ni}(\mathrm{gga})\mathrm{CN}^{-}]/\mathrm{d}t = (k_{\mathrm{d}} + k_{\mathrm{H}}[\mathrm{H}^{+}])[\mathrm{Ni}(\mathrm{gga})\mathrm{CN}^{-}]$ (1)

explain the pH dependence are given in equations (2) and (3):

$$Ni(gga)CN^{-} \xrightarrow{k_d} Products$$
(2)

Ni(gga)CN⁻ +
$$H_3O^+ \xrightarrow{k_{\rm H}}$$
 Products (3)

Another possible mechanism, loss of cyanide followed by rapid proton transfer, would not exhibit pseudo-first-order kinetics under our experimental conditions. As indicated by the Figure, the predominant reaction above pH 8 is simple dissociation as given by k_d . Below pH ca. 7 the predominant reaction is that of the proton transfer limited path as given by $k_{\rm H}$. The solid line in the Figure is calculated using $k_{\rm d} = 8.0 \times 10^{-5} \, {\rm s}^{-1}$ and $k_{\rm H} = 4.3 \times 10^3$ 1 mol⁻¹ s⁻¹. The observed rate constant is the sum of the two terms shown in equation (4).

$$k_{\rm obs} = k_{\rm d} + k_{\rm H}[{\rm H}^+] \tag{4}$$

The rate of decomposition of Ni(gga)H₂O is reported as $3\cdot 1 \text{ s}^{-1}$ at pH ca. 9.1 This value, obtained by extrapolation to low ligand and buffer concentrations and also independent of hydrogen ion concentration, can be compared to $k_{d} =$ $8.0\,\times\,10^{-5}\,{\rm s}^{-1}$ for Ni(gga)CN⁻ determined at the same pH and under similar conditions. This is a reduction in rate of nearly 40,000-fold for the cyanide complex. The $k_{\rm H}$ value for Ni(gga)H₂O has not been measured; however, the $k_{\rm H}$ value for nickel-triglycine, Ni(ggg)⁻ is 2.0×10^5 l mol⁻¹ s⁻¹ which compares with $4.3 \times 10^3 \, \text{l mol}^{-1} \, \text{s}^{-1}$ for Ni(gga)CN⁻, again a significant reduction. These rate constants indicate that cyanide is capable of exerting a large kinetic stabilizing influence in square-planar nickel(11) complexes. The effect does not appear to be a trans-effect since breaking of the imide-nickel bond opposite the cyanide group is not believed to be involved in the rate-determining step.¹⁻³

(Received, 20th August 1973; Com. 1196.)

¹C. F. V. Mason, P. I. Chamberlain, and R. G. Wilkins, *Inorg. Chem.*, 1971, 10, 2345. ² E. J. Billo and D. W. Margerum, *J. Amer. Chem. Soc.*, 1970, 92, 6811; G. K. Pagenkopf and D. W. Margerum, *ibid.*, 1968, 90, 501; G. K. Pagenkopf and D. W. Margerum, *ibid.*, 1968, 90, 6963; E. B. Paniago and D. W. Margerum, *ibid.*, 1972, 94, 6704.

³G. K. Pagenkopf, J. Amer. Chem. Soc., 1972, 94, 4359; G. K. Pagenkopf, Inorg. Chem., submitted for publication.

