Preparation of the KrF⁺, Kr₂F₃⁺, and BrF₆⁺ Ions and their Characterisation by ¹⁹F Nuclear Magnetic Resonance and Raman Spectroscopy

By RONALD J. GILLESPIE* and GARY J. SCHROBILGEN

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary New adducts of KrF_2 with AsF_5 , SbF_5 , and PtF_5 are shown by ¹⁹F n.m.r. and Raman spectroscopy to be the ionic compounds $\text{KrF}^+\text{MF}_6^-$ (M = As, Sb, or Pt), $\text{KrF}^+\text{Sb}_2\text{F}_{11}^-$, $\text{Kr}_2\text{F}_3^+\text{MF}_6^-$ (M = As or Sb), and $\text{Kr}_2\text{F}_3^+\text{MF}_6^-, n\text{KrF}_2(\text{M} = \text{As or Sb})$; the gross structure of the new cation, Kr_2F_3^+ , has been established and appears to be similar to that of Xe_2F_3^+ ; the new cation, BrF_6^+ , has also been prepared by oxidation of BrF_5 with Kr_2F_3^+ .

The only previously characterised adduct of KrF_2 is the compound $\mathrm{KrF}_2,2\mathrm{SbF}_5.^{1,2}$ It also has been reported that KrF_2 forms a solid adduct with AsF_5 at -78° , but this solid has never been characterised.¹ Frlec and Holloway³ have very recently reported the Raman spectra of $\mathrm{KrF}_2,2\mathrm{MF}_5$ (M = Ta, Nb, or Sb) and $\mathrm{KrF}_2,\mathrm{TaF}_5$ and have obtained Raman evidence which indicated the possible existence of the $\mathrm{Kr}_2\mathrm{F}_3^+$ ion.

We report here the preparation of the adducts $\mathrm{KrF}_2,\mathrm{MF}_5$ -(M = As, Sb, or Pt), $2\mathrm{KrF}_2,\mathrm{MF}_5(\mathrm{M}=\mathrm{As} \text{ or Sb})$, and $n\mathrm{KrF}_2,\mathrm{MF}_5$ (M = As or Sb and n>2) and give the first conclusive evidence for the $\mathrm{Kr}_2\mathrm{F}_3^+$ cation in solution and in the solid phase.⁴

TABLE 1.	¹⁹ F n.m.r. 1	parameters for	KrF.	KrF+.	Kr.F.+	, their xeno	n analogues	and the	BrF_{s}^{+} ca	ation
----------	--------------------------	----------------	------	-------	--------	--------------	-------------	---------	------------------	-------

Species	Chemical shiftsª (p.p.m.)	$J/{ m Hz}$	T/°C	Solutes (molar conc.)	Solvent
KrF ₂	-55.6		26	KrF ₂ (ca. 0·1)	HF
KrF+	22.6		- 40	$\begin{cases} KrF_2(ca. 0.1) \\ SbF_5(ca. 0.5) \end{cases}$	HF
Kr ₂ F ₃ +	$\begin{cases} A - 19.0 \\ X_{a} - 73.6 \end{cases}$	$351(^{19}F_t-^{19}F_b)$	-66	$\int \operatorname{Kr} \mathbf{F}_{2}(ca. (1))$ SbF _e (ca. 0.5)	BrF_{5}
XeF,	199.6	5665(¹²⁹ Xe ⁻¹⁹ F)	68	$XeF_{2}(-1)$	\mathbf{HF}
XeF^+	289.8	7210(¹²⁹ Xe ⁻¹⁹ F)	26	$XeF_{a}(0.34)$	SbF5
$\rm Xe_2F_3^+$	$\begin{cases} A & 184 \cdot 7 \\ X_2 & 252 \cdot 0 \end{cases}$	$\begin{cases} 308^{(19}F_t - {}^{19}F_b) \\ 4865^{(129}Xe - {}^{19}F_b) \\ 6740^{(129}Xe - {}^{19}F_t) \end{cases}$	-62	$Xe_{2}F_{3}^{+}AsF_{6}^{-}(0.67)$	BrF_{5}
BrF_{6}^{+}	-339.4	${1575(^{79}Br-^{19}F)}{1697(^{81}Br-^{19}F)}$	26	$\mathrm{BrF_{6}^{+}Sb_{2}F_{11}^{-b}}$	$_{ m HF}$

^a Spectra recorded at 56.4 or 58.3 MHz and referenced to external CFCl₃. ^b Concentration unknown; $BrF_6+Sb_2F_{11}^-$ was obtained as a mixture with $BrF_4+Sb_2F_{11}^-$ and dissolved in HF solvent; $(BrF_n+Sb_2F_{11}^-)$ ca. 0.5 M.

The SbF_5 and AsF_5 adducts were formed by the series of reactions given in Schemes 1 and 2, respectively. Platinum

hexafluoride reacts with KrF_2 according to equation (1) to give a yellow solid which can be formulated as $KrF^+PtF_6^-$ on the basis of its Raman spectrum.

$$\operatorname{KrF}_{2} + \operatorname{PtF}_{6} \xrightarrow{0^{\circ}} \operatorname{KrF}^{+}\operatorname{PtF}_{6}^{-} + \frac{1}{2}\operatorname{F}_{2}$$
 (1)

Fluorine-19 n.m.r. evidence has been obtained for both KrF⁺ and Kr₂F₃⁺ in solution. The n.m.r. parameters are given in Table 1 and are compared with those of XeF⁺ and Xe₂F₃⁺. A solution of KrF₂ in HF gave a single resonance at $-55\cdot6$ p.p.m. from external CFCl₃, in good agreement with the previously reported value of -53 p.p.m.⁵ Transfer of the solution to a sample tube containing an excess of SbF₅ with respect to KrF₂ gave a new signal to high field of KrF₂. This new signal can be assigned to KrF⁺ and the high field shift is analogous to that observed when XeF₂ ionises to XeF⁺. A solution containing a two-fold excess of KrF₂ with respect to SbF₅ in BrF₅ solution at low tem-

perature gave an AX₂ spectrum which can be unambiguously assigned to the V-shaped fluorine-bridged structure (I) similar to that of $Xe_2F_3^{+,6}$ It is noteworthy, however, that the terminal fluorine resonance of $Kr_2F_3^+$ occurs to low field of the bridging fluorine resonance while the opposite is true in the case of $Xe_2F_3^+$. The relatively large fluorinefluorine coupling, which is the first observed for a krypton compound, is, however, similar to the value observed for $Xe_2F_3^+$.

The Raman spectra of the KrF^+ and $Kr_2F_3^+$ compounds are also consistent with the ionic formulation of these compounds. The spectra of the KrF⁺ salts (Figure a-e) consist of a strong high frequency band(s) due to the Kr-F stretch, characteristic bands of the anion, a weak band at ca. 340 cm⁻¹ which may be attributed to the stretching of the F-Kr---FMF, bridging bond and several bands in the region 100 to 200 cm⁻¹ which may be reasonably assigned to bending and torsional modes of the F-Kr---F group. Unlike KrF+Sb₂F₁₁⁻, the Kr-F stretch in all the KrF+MF₆⁻ compounds appears as an intense doublet which is attributed to factor group splitting of this mode. In the case of the MF_6^- compounds the formally forbidden ν_3 and ν_4 vibrations of the anion were observed; this may be attributed to lowering of the octahedral symmetry of the MF_{6}^{-} anion by the fluorine bridge.

TABLE 2. Raman frequencies and assignments for $BrF_6^+AsF_6^{-a}$

Frequency (cm ⁻¹)	Assignment
679(41)	$v_1(a_{1g}), AsF_6^-$
668(28)	$v_2(e_q)$, BrF ₆ +
658(100)	$v_1(a_{1g})$, Br \tilde{F}_6^+
575(4)	$v_2(e_q)$, AsF ₆
405(34)	$v_5(t_{2a})$, BrF ₆ +
367(6)	$v_5(t_{2g}), AsF_6^-$

 $^{\rm a}$ Spectrum recorded at $-90^{\circ}\text{C};$ lines due to the FEP sample tube have been deleted.

The Raman spectra of $\mathrm{Kr_2F_3^+SbF_6^-}$ and $\mathrm{Kr_2F_3^+AsF_6^-}$ (Figure f—g) show the expected anion frequencies. In contrast to $\mathrm{Xe_2F_3^+}$, however, it appears that the Raman spectrum of the $\mathrm{Kr_2F_3^+}$ ion is best interpreted in terms of the unsymmetrical structure (II) which is effectively a $\mathrm{KrF^+}$ ion fluorine bridged to a $\mathrm{KrF_2}$ molecule. The $\mathrm{KrF^+}$ stretch is observed at a slightly lower frequency than in the $\mathrm{KrF^+MF_6^-}$ salts. Bands are observed at 555 and 456 cm⁻¹ ($\mathrm{Kr_2F_3^+}$ -

FIGURE. Raman spectra of KrF^+ and $Kr_2F_3^+$ salts. Spectra were recorded at -90° C; lines due to the FEP sample tube have been deleted. The Kr-F stretching frequencies of the KrF+ salts occur at (a) 606(50) and 599(60) cm⁻¹, (b) 624(100) cm⁻¹, (c) 619(74) and 615(100) cm⁻¹, (d) 619(72) and 615(100) cm⁻¹ (high temperature modification), (e) 607(100) and 596(100) cm⁻¹ (high temperature modification). The Kr-F stretching fre-(now temperature modification), (e) 607(100) and 550(100) cm (high temperature modification). The Kr-F stretching fre-quencies of the asymmetric Kr₂F₃+ cation occur at (f) 603(100) and 594(89) cm⁻¹ (KrF⁺), and 555(34) and 456(4) cm⁻¹ (KrF₂); (g) 610(43), 600(80) and 594(100) cm⁻¹ (KrF⁺), and 437(5) and 567(31) cm⁻¹ (KrF₂). The Kr₂F₃+,nKrF₂ salts have strong lines that are assigned to Kr-F stretching modes at (h) 599(100), rrff(r) (m) and 559(20) cm⁻¹ (k) 690(100) 575(22) and 559(50) cm⁻¹ 557(50) and 466(60) cm⁻¹; (i) 602(100), 575(23) and 553(50) cm⁻¹. The strongest lines at 456 and 462 cm⁻¹ are assigned to v_1 of excess KrF₂ present in the samples.

 SbF_6^{-}) and at 567 and 467 cm⁻¹ (Kr₂F₃+SbF₆⁻) which may be assigned to v_3 and v_1 of the KrF₂ part of the ion [cf. v_1 at 449 (Raman) and v_3 at 588 (i.r.) for gaseous KrF_2]. The observation of the formally forbidden v_3 vibration of KrF₂ in the Raman spectrum is consistent with a lowering of the symmetry of the molecule by the fluorine bridge. Finally, the stretching of the weaker and longer Kr---F bond is observed at 330 and 336, 347 cm⁻¹ in the SbF⁻₆ and AsF₆⁻ compounds, respectively. It is not entirely clear why $Kr_2F_3^+$ is symmetrical in solution in BrF_5 , but apparently unsymmetrical in the solid state. It is possible that the lack of symmetry in the solid state is due to weak fluorine bridging with the anion.

The $\mathrm{Kr}_2\mathrm{F}_3^+$ salts react with further KrF_2 to give new adducts which are tentatively formulated as Kr₂F₃+MF₆-, $n \operatorname{KrF}_2$ (Figure h—i). The formation of these adducts is accompanied by further characteristic changes in the Raman spectra, but in view of a complete lack of any structural information on these compounds or any analogous compounds no attempt is made to analyse these spectra here.

Solutions of $Kr_2F_3+SbF_6^-$ and $Kr_2F_3+AsF_6^-$ in BrF_5 are not stable and on warming to room temperature rapidly decompose to give Kr, F_2 , and the new cation, $BrF_6^{+,7}$ The stable white salts $BrF_6^+AsF_6^-$ and $BrF_6^+Sb_2F_{11}^-$, the latter as a mixture with $BrF_4+Sb_2F_{11}-$, have been isolated from these solutions. The Raman spectrum of $BrF_6^+AsF_6^-$ is given in Table 2. As in the case of $IF_6^{+,8} v_2$ of the octahedral BrF_{8}^{+} ion occurs at higher frequency than v_{1} .

The 19 F n.m.r. spectrum of the BrF₆⁺ cation in HF solvent (Table 1) consists of two overlapping 1:1:1:1 quartets at very low field. These are assigned to ⁷⁹BrF₆⁺ and ⁸¹BrF₆⁺ and arise from spin-spin coupling of six equivalent fluorines with ⁷⁹Br and ⁸¹Br, both with I = 3/2, and represent the first reported case of a Br-F coupling. The observation of well-resolved Br-F spin-spin coupling indicates a spherically symmetric electric field about the bromine nucleus, confirming the expected O_h symmetry for the BrF_6^+ ion solution.

(Received, 29th August 1973; Com. 1219.)

¹ H. Selig and R. D. Peacock, J. Amer. Chem. Soc., 1964, 86, 3895.
² D. E. McKee, C. J. Adams, A. Zalkin, and N. Bartlett, J.C.S. Chem. Comm., 1973, 26.
³ B. Frlec and J. H. Holloway, J.C.S. Chem. Comm., 1973, 370.
⁴ R. J. Gillespie, B. Landa and G. J. Schrobilgen, paper presented at the Assemblée générale annuelle de la Société Chimique de France, Marseille, France, May 23-25, 1973.
⁵ F. Schreiner, J. G. Malm, and J. C. Hindman, J. Amer. Chem. Soc., 1965, 87, 25.
⁶ F. O. Sladky, P. A. Bulliner, N. Bartlett, B. G. De Boer, and A. Zalkin, Chem. Comm., 1968, 1048.
⁷ R. J. Gillespie, paper presented at the XXIVth International Congress of Pure and Applied Chemistry, Hamburg, Germany, Sept. 3-8, 1973; R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., to be published.
⁸ K. O. Christe and W. Sawodny, Inorg. Chem., 1967, 6, 1783.