Trifluoromethanesulphonic Acid, as a Deprotecting Reagent in Peptide Chemistry

By HARUAKI YAJIMA, NOBUTAKA FUJII, HIROSHI OGAWA, and HIROKI KAWATANI* (Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan)

Summary Trifluoromethanesulphonic acid was found to cleave, in the presence of anisole, a number of protecting groups currently employed in peptide chemistry without significant side reactions. Each amino-acid derivative was dissolved at 20° in methylene chloride or trifluoroacetic acid and 5—10 equiv. of the reagent were employed. In order to suppress the possible alkylation reaction,¹ anisole (1.5—3 equiv.) was used as a scavenger. Part of the solution was subjected to quantitative amino-acid analysis.

Acid labile amino-protecting groups, such as Boc, Z(OMe), and NPS, were cleaved quantitatively within 3-5 min. In addition to the t-butyl ester group, the benzyl group attached at the ω -carboxy-function of Glu and Asp and at the hydroxy-function of Ser and Thr was removed completely within 30 min. Treatment of Z-Trp-

TRIFLUOROMETHANESULPHONIC acid is a reagent acidic enough to cleave the benzyloxycarbonyl group within 15 min at room temperature (20°) . We have found that this reagent also removes various protecting groups currently employed in peptide chemistry (Table).

TABLE. Removal of various protecting groups by trifluoromethanesulphonic acid

Treated amino-	Parent	amino-acid	regenerated	1 (%)
acid derivatives	35 min	$15 \min$	3 0 min	60 min
NPS-Val-OH ^a	99 ·9			
Boc-Ser-OH ^a	99.2			
Z(OMe)-Gly-OHa	99 ·8			
Z-Trp-OH	85.6	94·6	100.9	
Z-Tyr-OH		92.4		
Z-Met-OH ^b		48 ·1	88.3	
Z-Glu-OH	91.7	100.1		
Z-Glu(OBu ^t)-OH		98 ·8		
H-Glu(OBzl)-OH	$98 \cdot 8$	100.7		
H-Asp(OBzl)OH	$95 \cdot 8$	$97 \cdot 2$	100.4	
H-Ser(Bzl)-OH	76.3	96.3	100.4	
H-Thr(Bzl)-OH	91.7	96.5	99 ·0	
H-Tyr(Bzl)-OH		10.7	10.5	
H-Arg(Tos)-OH ^c	$85 \cdot 8$	87.1	93.3	100.1
$H-Arg(NO_2)-OH^c$		21.3	33.5	34.5
H-His(Tos)-OH	77.9	79.1	84.3	98.4
H-Cys(Bzl)-OH ^c		62.0	98.7	
H-Cys(MBzl)-OH	99.8	100.0		

OH and Z-Tyr-OH with this reagent for 30 min regenerated the parent amino-acids in nearly quantitative yields, indicating that addition of anisole is effective to prevent the alkylation during this deprotection. However, the recovery of Tyr, after similar treatment of H-Tyr(Bzl)-OH, was low, because of the predominant formation of the rearrangement product, 3-benzyltyrosine.² Under similar conditions, the recovery of Met, regenerated from Z-Met-OH, was also low. However, improvement was expected when the treatment was performed at 0° in the presence of anisole plus methyl ethyl sulphide or dithiothreitol.

Regeneration of Arg from H-Arg(Tos)-OH was achieved quantitatively after treatment with this reagent at 40° for 60 min, but only 35% was regenerated from H-Arg(NO2)-OH under identical conditions. The S-p-methoxybenzyl ester group of Cys was found to be cleaved within 15 min, but removal of the S-benzyl group required somewhat elevated temperature (40°).

From the results so far obtained, trifluoromethanesulphonic acid seems to have a similar action to liquid hydrogen fluoride³ or boron tris(trifluoroacetate).⁴

(Received, 24th September 1973; Com. 1343.)

^a Methylene chloride was employed as a solvent. ^b Reaction in the presence of dithiothreitol. \circ Reaction at 40° .

¹ F. Effenberger and G. Epple, Angew. Chem., 1972, 84, 294.
² D. Yamashiro and C. H. Li, J. Org. Chem., 1973, 38, 591; B. W. Erickson and R. B. Merrifield, J. Amer. Chem. Soc., 1973, 95, 3750;
³ P. A. Spanninger and J. L. von Rosenberg, *ibid.*, 1972, 94, 1973.
³ S. Sakakibara and Y. Shimonishi, Bull. Chem. Soc. Japan, 1965, 38, 1412.

⁴ J. Pless and W. Bauer, Angew. Chem. Internat. Edn., 1973, 12, 147.