Conversion of Cyclo-octa-1,5-diene into 2,6-Diacetoxybicyclo[3,3,0]octane by Palladium(II) Chloride-Lead Tetra-Acetate in Acetic Acid; \boldsymbol{X}-Ray Determination of the Structure of the Product

By Patrick M. Henry,* Muriel Davies, George Ferguson, Susan Phillips and Rod Restivo
(Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2WI, Canada)

Summary Oxidation of cyclo-octa-1,5-diene by $\mathrm{PdCl}_{2}-\mathrm{Pb}-$ (OAc$)_{4}$ in acetic acid gave as main product a 2,6 -diacetoxybicyclo $[3,3,0]$ octane which X-ray crystal analysis showed to be exclusively the di-endo-isomer.

Palladium(ii) salts alone in acetic acid oxidize monoolefins to vinyl or allylic acetates. ${ }^{1}$ However, addition of certain oxidants to the reaction mixture changes the products to saturated diacetates. ${ }^{2}$ We have now found that a
mixture of PdCl_{2} and $\mathrm{Pb}(\mathrm{OAc})_{4}$ in HOAc converts cyclo-octa-1,5-diene into the 2,6-diacetoxybicyclo[3,3,0]octane. Further, only one of six possible isomers are formed.

Cyclo-octa-1,5-diene was treated for 24 h with catalytic amounts of PdCl_{2} (0.04 mol . equiv.) in the presence of $\mathrm{Pb}(\mathrm{OAc})_{4}$ (1 m) in acetic acid at 25°. The main product (ca. 70%) was a solid, m.p. 36°. Its n.m.r. spectrum was consistent with a bicyclic saturated diacetate. The ester was hydrolysed and the alcohol converted into its diphenyl-
urethan derivative, m.p. $188^{\circ} . \dagger$ A crystal structure determination on the diphenylurethan derivative, $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, indicated the structure to be di-endo-2,6-diphenylurethan-cis-bicyclo[3,3,0]octane.

Figure. A view of the di-endo-2,6-diphenylurethan-cis-bicyclo$[3,3,1]$ octane molecule. The two-fold symmetry axis passes through the centre of the $C(1)-C\left(1^{\prime}\right)$ bond. Bond lengths (mean $\sigma=0.006 \AA$), bond angles (mean $\sigma=0.2^{\circ}$) are shown as well as torsion angles $\left({ }^{\circ}\right)$ within the five-membered ring.

A view of the molecule together with details of molecular geometry is shown in the Figure. The oxygen substituents on the bicyclo $[3,3,0]$ octane ring are clearly endo, and there is marked puckering of the five-membered rings (see torsion angles in the Figure).
The crystals are orthorhombic, space group F2dd ($\mathrm{C}_{2 v}^{19}$); $a=5.289(7), b=12.948(9), c=55.15(4) \AA ; D_{\mathrm{m}}=1.34 \mathrm{~g}$ cm^{-3} consistent with $Z=8\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right.$ molecules); in space group $F 2 d d$ this demands that each molecule lie on a diad axis. Using $\mathrm{Cu}-K_{\alpha}$ radiation 699 reflexions were measured with a Hilger and Watts Y-290 computer-controlled diffractometer by the $\theta-2 \theta$ scan technique. The structure was solved from an analysis of the three-dimensional Patterson function and refined by full-matrix least-squares with anisotropic thermal parameters. The conventional R-factor is $\mathbf{3 . 3} \%$ for the 583 'observed' reflexions.

Three $c i s$-isomers are possible. A reaction sequence for exclusive formation of one of these, compound (1), which is consistent with known $\mathrm{Pd}{ }^{I I}$ chemistry is in the Scheme.

Scheme

Thus, oxypalladation of cyclo-octa-1,5-diene has been shown to be trans ${ }^{3}$ while the insertion of PdILC across double bonds has been shown to be cis. ${ }^{4}$ Finally, stereochemical studies with $\left[3,3,6,6-{ }^{2} \mathrm{H}_{4}\right]$ cyclohexene indicate that $\mathrm{Pd}^{I I}$ is displaced in an $S_{\mathrm{N}} 2$ fashion with inversion of configuration. ${ }^{5}$
We thank the National Research Council of Canada for financial support.
(Received, lst October 1973; Com. 1370.)
\dagger Both the diacetate and diphenylurethan derivative gave satisfactory elemental analyses.
${ }^{1}$ P. M. Maitlis, 'The Organic Chemistry of Palladium,' vol. II, Academic Press, New York, 1971, pp. 93-105.
${ }^{2}$ P. M. Henry, J. Org. Chem., 1967, 32, 2575; 1973, 38, 1681.
${ }^{3}$ L. F. Hines and J. K. Stille, J. Amer. Chem. Soc., 1972, 94, 485.
${ }^{4}$ P. M. Henry, J. Amer. Chem. Soc., 1972, 94, 673.
${ }^{5}$ P. M. Henry, J. Amer. Chem. Soc., 1972, 94, 7305.

