Competitive $\alpha\alpha$ - and $\alpha\beta$ -Dehydrohalogenations from CH₃CDF₂ behind Shock Waves

By M. V. C. SEKHAR and E. TSCHUIKOW-ROUX*

(Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1NG)

Summary An estimate of the extent of the $\alpha\alpha$ -elimination of HF in 1,1-difluoroethane is obtained from a study of the shock-tube pyrolysis of the deuteriated isomer, CH_3CDF_2

It has generally been accepted^{1,2} that the pyrolytic dehydrohalogenations of halogeno-ethanes occur via a fourcentre transition state so that elimination is an $\alpha\beta$ -process involving substituents on adjacent carbon atoms. However, with the discovery of the formation of CD_2CDF in the decomposition of chemically activated CD₃CHF₂^{3,4} the possibility of the occurence of concurrent $\alpha\alpha$ -eliminations in halogeno-ethanes has to be considered. The $\alpha\alpha$ -elimination involves the substituents on the same carbon atom and has been suggested^{4,5} to occur via a three-centre transition state leading to a carbene intermediate, followed by the rapid rearrangement of the carbene to the olefin. On the basis of the results of the chemical activation experiments on $CD_{2}CHF_{2}$, Kim et al.⁴ have concluded that the $\alpha\alpha$ elimination channel contributes ca. 10% to the total elimination in CH₃CHF₂. The present study of the pyrolysis of CH₃CDF, is the first report of a competition between $\alpha\alpha$ - and $\alpha\beta$ -eliminations occurring in a thermal system.

FIGURE. Temperature dependence of the overall rate constant for the HF and DF eliminations from $CH_{s}CDF_{s}$ (filled circles). Dotted line: data from ref. 7.

The decomposition was studied in a modified singlepulse shock tube.⁶ The reflected-shock temperatures and the reaction dwell times were calculated using techniques which have been described previously.⁶ The deuteriated reactant, CH₃CDF₂ was synthesised in two steps. In the first step, HI was added to CH₂CF₂ in a steel cylinder giving $CH_{3}CF_{2}I$ which was then reduced with $LiAlD_{4}$ in ethereal solution. All kinetic experiments were performed on a well mixed, dilute (ca. 1%) mixture of the reactant in argon. Analysis for CH₂CDF vs. CH₂CHF of the shocked mixture was carried out using a g.c.-coupled mass spectrometer equipped with a Porapak Q column. A normal gas chromatographic analysis was also carried out to determine the total product to reactant ratios.

CH₂CHF and CH₂CDF resulting from the elimination of DF and HF, respectively. Our preliminary results of the variation of the overall rate constant for the elimination $(k_{\alpha\alpha} + k_{\alpha\beta})$ with temperature are shown as filled circles in the Figure. The dotted line represents earlier detailed data of Tschuikow-Roux, et al.7 for HF elimination from CH₃CHF₂. From the ratio CH₂CHF:CH₂CDF in the shocked mixture, the rate constant ratio $k_{\alpha\alpha}k_{\alpha\beta}$ for CH₃CFD₂ is estimated to be 0.07. After correction for the isotope effect between HF and DF three-centre eliminations from $\mathrm{CH}_3\mathrm{CHF}_2$ and $\mathrm{CH}_3\mathrm{CDF}_2$, respectively, the $\alpha\alpha\text{-elimination}$ channel is estimated to contribute ca. 13% to the total elimination in CH₃CHF₂.

Over the range 1130-1270 K, the main products were

(Received, 26th November 1973; Com. 1619.)

- ¹ A. Maccoll, Chem. Rev., 1969, 69, 33.

- ¹ A. Maccoll, Chem. Rev., 1969, 69, 33.
 ² S. W. Benson and G. R. Haugen, J. Amer. Chem. Soc., 1965, 87, 4036.
 ³ M. J. Perona, J. T. Bryant, and G. O. Pritchard, J. Amer. Chem. Soc., 1968, 90, 4782.
 ⁴ K. C. Kim, D. W. Setser, and B. E. Holmes, J. Phys. Chem., 1973, 77, 725.
 ⁵ K. C. Kim and D. W. Setser, J. Phys. Chem., 1972, 76, 283.
 ⁶ E. Tschuikow-Roux, J. M. Simmie, and W. J. Quiring, Astronaut. Acta, 1970, 15, 511.
 ⁷ E. Tschuikow-Roux, W. J. Quiring, and J. M. Simmie, J. Phys. Chem., 1970, 74, 2449.