Determination of Deuteron Quadrupole Coupling Constant in the Liquid State

By LLOYD M. JACKMAN,* EDWARD S. GREENBERG, NIKOLAUS M. SZEVERENYI, and GERD K. SCHNORR (Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802)

Summary A method of determining deuteron quadrupole coupling constants for deuterium directly bonded to carbon in molecules in the liquid state is described, which involves measurements of the deuteron spin-lattice relaxation time and that of the ¹³C nucleus in the undeuteriated molecule; values of 227 and 186 MHz are obtained for phenyl[²H₁]acetylene and [²H₆]benzene, respectively.

lattice relaxation of the deuteron, a process which is completely dominated by the quadrupole mechanism. Equation (1) shows that the relaxation time, $T^{\mathbf{q}}$, is related to the quadrupole coupling constant (e^2Qq_{zz}/h) through $f(\Omega, \mathbf{D})$. The elements of Ω are geometric factors relating the rotational diffusion axes to the direction of q_{zz} , the field gradient at the deuteron, which is assumed to be axially symmetric.² **D** is the rotational diffusion tensor. If rotational diffusion is isotropic, $f(\Omega, \mathbf{D})$ can be replaced by a single correlation time, $\tau_{\mathbf{c}}$. A number of workers^{3,4} have attempted to determine quadrupole coupling constants by assuming isotropy of rotational diffusion and estimating

The determination of deuterium quadrupole coupling constants (e^2Qq_{zz}/h) in organic molecules in the liquid phase is available, in principle from the studies of the spin-

 τ_c from the intramolecular dipole-dipole spin-lattice relaxation times (T_1^{DD}) for protons. Assink and Jonas³ have pointed out that this procedure is only valid in those rare cases in which the sole intramolecular dipole-dipole interactions are between pairs of protons, the internuclear vectors for which are parallel with q_{zz} . In other cases the assumption of isotropy may lead to serious errors. Furthermore, the evaluation of the intramolecular contribution to T_1^{DD} requires a tedious and error-prone extrapolation of the observed T_1 's to infinite dilution in magnetically inert solvents. We now show that the problem of anisotropic rotational diffusion can always be avoided by combining $T_1^{\ \ensuremath{\varrho}}(^{2}\text{H})$ with the ¹³C dipole relaxation time $T_1^{\ \ensuremath{DD}}(^{13}\text{C})$ for the same carbon atom in the undeuteriated molecule to which the deuteron is attached in the deuteriated species. In this situation the ¹³C-H internuclear vector is necessarily colinear with q_{zz} and $g(\Omega, \mathbf{D})$ in equation (2)^{1,5} is identical with $f(\Omega, \mathbf{D})$ in equation (1). The quadrupole coupling constant is then given by equation (3) in which r_{CH} is the C-H bond length in Å. We now apply equation (3) in two

$$1/T_1^{Q}({}^{2}\mathrm{H}) = \frac{3}{8} \left(e^2 Q q_{zz} / \hbar \right)^2 \cdot f(\Omega, \mathbf{D})$$
(1)

$$1/T_{1}^{\text{DD}}(^{13}\text{C}) = (\gamma_{\text{C}}^{2}\gamma_{\text{H}}^{2}\hbar^{2}/r_{\text{CH}}^{6}) \cdot g(\Omega, \mathbf{D})$$
(2)

$$(e^{2}Qq_{zz}/h) = 49.3 r_{\rm CH}^{-3} (T_{1}^{\rm DD}/T_{1}^{\rm Q})^{i} - (\rm kHz)$$
(3)

systems for which fairly reliable estimates of the deuteron quadrupole coupling constants are available from other sources.

 $T_1^{\ \varrho}$ for phenyl[²H₁]acetylene is 0.28 ± 0.01 at 299 K⁶ and, at this temperature, we find T_1^{DD} for the β -carbon atom in degassed phenylacetylene to be 8.2 ± 0.1 s (at this temperature the nuclear Overhauser enhancement is 1.98, so that $T_1^{\text{obs}} = T_1^{\text{DD}}$. With $r_{CH} = 1.056 \text{ Å}$, the C-H bond length in acetylene, equation (3) gives 227 \pm 4 kHz for the deuteron quadrupole coupling constant. This value

- ¹ W. T. Huntress, Jr., J. Chem. Phys., 1968, 48, 3524. ² J. P. Kintzinger and J. M. Lehn, Mol. Phys., 1971, 22, 273.
- ³ R. A. Assink and J. Jonas, J. Magnetic Resonance, 1971, 4, 347 and references cited therein.
 ⁴ E. Tomchuk, J. J. Czubryt, E. Bock, and N. Chatterjee, J. Magnetic Resonance, 1973, 12, 20.
 ⁵ D. E. Woessner, J. Chem. Phys., 1962, 37, 647.
 ⁶ J. Jonas and T. M. DiGennaro, J. Chem. Phys., 1969, 50, 52.
 ⁷ L. E. Statan, 'Tables of Internet with Distances in Malanulas and Lang,' Special Publication No.

- ⁷ L. E. Sutton, 'Tables of Interatomic Distances in Molecules and Ions,' Special Publication No. 11, The Chemical Society, London, 1958, p. S16.
- ⁸ P. L. Olympia, jun., I. Y. Wei, and B. M. Fung, J. Chem. Phys., 1969, 51, 1610.
- ⁹G. C. Levy, J.C.S. Chem. Comm., 1972, 47.
- ¹⁰ J. G. Powles, M. Rhodes, and J. H. Strange, Mol. Phys., 1966, 11, 515.
 ¹¹ J. Rowell, W. Phillips, L. Melby, and M. Panar, J. Chem. Phys., 1965, 43, 3442.
 ¹² P. Pyykko, Ann. Univ. Turku. Ser. AI, 1966, 93, 3.
 ¹³ D. E. O'Reilly and E. M. Peterson, J. Chem. Phys., 1971, 55, 2155.
 ¹⁴ D. M. Ellis and J. L. Bjorkstam, J. Chem. Phys., 1967, 46, 4460.

may be compared with 215 \pm 5 obtained from wide-line n.m.r. studies⁸ on polycrystalline phenyl[²H₁]acetylene at 199 K and 230 \pm 14 for *p*-di[²H₂]ethynylbenzene in CD₃CN at 299 K.³ This latter value was obtained by using proton relaxation times and is a case in which the H-H internuclear vectors are parallel with q_{zz} .

The value for $T_1^{DD}(^{13}C)$ for degassed benzene at 311 K is reported⁹ to be 37 s and we have confirmed this value. Interpolation of the $T_1^{\ \varrho}$ vs. temprature data for $[{}^{2}H_{\mathfrak{g}}]$ benzene reported by Powles et al.,¹⁰ gives $T_1^{\ q} = 1.6$ s at this temperature and using (3) a deuteron quadrupole coupling constant of 186 kHz is calculated. This value may be compared with 193 \pm 3 from studies in the nematic phase,¹¹ 186.6 \pm 1.6 from deteuron magnetic resonance of single crystals,¹² and 200 \pm 10 using proton and deuteron spinlattice relxation times.¹⁰ Other pertinent values are 180 for chloro[²H₅]benzene (low temperature, wide-line n.m.r.),¹³ 181 + 10 for p-chloro²H₁ benzene from proton and deuteron spin-lattice relaxation times (this is another case in which r_{CH} and q_{zz} are parallel.)³ Finally, Ellis and Bjorkstam¹⁴ have performed a very careful wide-line n.m.r. study of oriented single crystals of perdeuterioanthracene and have found the value of 181 ± 3 kHz for all three types of deuterons.

If $T_1^{DD}(^{13}C)$ and $T_1^{\varrho}(D)$ can be determined with an accuracy of $\pm 5\%$ and $r_{\rm CH}$ is accurate to ± 0.01 Å, the propagated error in the quadrupole coupling constant is $\pm 4.5\%$. The great advantage of the method is that it requires no knowledge of the rotational diffusion tensor and no knowledge of molecule geometry other than r_{CH} .

We thank Dr. W. A. Steele for helpful discussions. One of us (G. Schnorr) gratefully acknowledges receipt of a Fulbright grant.

(Received, 4th December 1973; Com. 1648.)