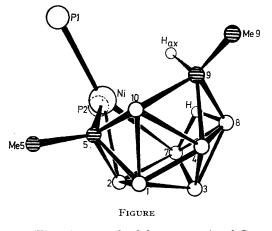
The Synthesis and Crystal Structure of a Carbadibora-allyl Nickel Complex


By MICHAEL GREEN, JUDITH HOWARD, JOHN L. SPENCER, and F. GORDON A. STONE,* (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary The synthesis and crystal structure of the complex $[Ni(B_7C_2H_9Me_2)(PEt_3)_2]$ is described. The nickel is joined to a B_2C system in a 1,2,3- η bonding mode.

IN an important series of papers Hawthorne and his coworkers¹ have shown that the chemistry of the dicarbollide ion $B_9C_2H_{11}^{2-}$ closely parallels that of the cyclopentadienyl anion in terms of bonding to transition metals. Recently the synthesis and structural characterisation of the complex $[Pt(B_3H_7)(PEt_3)_2]$ has led to the suggestion² that the B_3 framework may be considered analogous to a π -allyl system. A similar analogy has been drawn in the "slipped" sandwich complexes of $B_9C_2H_{11}^{2-}$ where three facial boron atoms play the role of allylic carbons.³ We now report the first example of an η -carbadibora-allyl complex.

When tetrakis(triethylphosphine)nickel was added to a solution of the *arachno*-carborane 1,3- $B_7C_2H_{11}Me_2^{4,5}$ one molecule of hydrogen was evolved and red crystals of complex (I) [Ni($B_7C_2H_9Me_2$)(PEt₃)₂] m.p. 152—154° were formed, which in solution showed air instability. Analogous reactions between $B_7C_2H_{11}Me_2$ and [Ni(PMe_3)_4], [Pt(PEt_3)_2(stilbene)], [Pt(PMe_3)_2(stilbene)] or [Pt(PPh_3)_2(stilbene)] gave respectively (II) [Ni($B_7C_2H_9Me_2$)(PMe_3)_2] m.p. 184°, (III) [Pt($B_7C_2H_9Me_2$)(PEt_3)_2] m.p. 167°, (IV) [Pt($B_7C_2H_9Me_2$)(PMe_3)_2] m.p. 248°, and (V) [Pt($B_7C_2H_9Me_2$)(PPh_3)_2] m.p. 270°; the platinum compounds all being air-stable. The parent *arachno*- $B_7C_2H_{11}$ also reacts similarly to form, for example, (VI) [Pt($B_7C_2H_{11}$)(PEt_3)_2], m.p. 199°.

The X-ray crystal structure of (I) was determined. The crystals are monoclinic, space group $P2_1/n$; $a = 9\cdot 144(3)$, $b = 18\cdot 954(5)$ $c = 15\cdot 021(4)$ Å; $\beta = 90\cdot 51(4)^\circ$, V = 2580 Å³; $D_{\rm m} = 1\cdot 13$ g cm⁻³, $D_{\rm c} = 1\cdot 12$ g cm⁻³, Z = 4, $\mu = 8\cdot 7$ cm⁻¹. Diffraction data were collected on a Syntex P2₁ four-circle diffractometer using Mo- K_{α} radiation. The

structure (Figure) was solved by conventional Patterson, Fourier and full matrix least squares techniques to a current R value of 10.4% for 3449 independent non-zero reflections.

The geometry of (I) is that of a nido-metallocarborane isoelectronic and approximately isostructural with decaborane. The open six-atom face is defined \dagger by Ni, C(5), B(10), C(9), B(8) and B(7) with the P₂Ni system co-ordinated to C(5), B(2), and B(7) where Ni-B(7) = $2 \cdot 14(1)$, Ni-B(2) = 2.11(1), Ni-C(5) = 2.08(1) Å; P(1)-Ni-P(2) = $102.7(2)^{\circ}$ and $C(5)-Ni-B(7) = 85.4(4)^{\circ}$. Nickel to phosphorus bond distances of Ni-P(1) = $2 \cdot 242(3)$ and Ni-P(2) = $2 \cdot 200(3)$ Å were observed.

These observations suggest that unlike the previously reported $[Co(C_2B_7H_{11})(C_5H_5)]$,⁶ these complexes may be regarded as $1, 2, 3-\eta$ B₂C bonded compounds of Ni^{II} and Pt^{II}, analogous to the cationic species $[ML_2(C_3H_5)]^+$ (M = Ni, Pt),⁷ and represent a new development in metallocarborane chemistry.

Comparison of the geometry of (I) with that of 1.3-B₇C₂H₉Me₂⁵ suggests that in forming (I) there is little change in the geometry of the B₇C₂ system. We suggest that the formation of (I)---(VI) involves an initial oxidativeaddition reaction between the d^{10} metal species and one of the acidic axial CH bonds of the carborane followed by protolysis of the resultant metal-hydrogen bond by a BHB bridged hydrogen.

Examination of the ¹H n.m.r. spectrum of (I) showed a resonance centred at τ 9.83, which is assigned to CH_{ax}, the Me(5) and Me(9) resonances being partially obscured by the ethyl resonance of the Et₃P ligands. However, the spectrum of the bis(triphenylphosphine)-platinum analogue (V) showed resonances at τ 8.40 [dd, with ¹⁹⁵Pt satellites, 3H. Me(5), $J(HP^1) \simeq J(HP^2) \simeq 4.0$ Hz, J(HPt) = 16.0 Hz], 8.66 [d, 3H, Me(9), J(HHax) 6.0 Hz] and 9.38 [broad, 1H, Hax].

These observations contrast with the report⁸ that the dianion 1,3-B₇C₂H₁₁²⁻ derived from 1,3-B₇C₂H₁₃ reacts with $CoCl_2$ to give complexes of the $B_7C_2H_9^{2-}$ ion, in which two carbons and three borons are bonded to the transition metal.

We thank the U.S.A.F. Office of Scientific Research for support.

(Received, 26th November 1973; Com. 1615.)

† We have chosen to number the atoms according to IUPAC rules as a heterodecaborane rather than as a metal-ligand complex.

- ¹ M. F. Hawthorne, Accounts. Chem. Res., 1968, 1, 281.

- ¹ L. J. Guggenberger, A. R. Kane, and E. L. Muetterties, J. Amer. Chem. Soc., 1972, 94, 5665.
 ³ R. M. Wing, J. Amer. Chem. Soc., 1967, 89, 5599; 1968, 90, 4828.
 ⁴ F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Amer. Chem. Soc., 1966, 88, 607; 1968, 90, 869.
- ⁵ D. Voet and W. N. Lipscomb, Inorg. Chem., 1967, 6, 113.
 ⁶ C. J. Jones, J. N. Francis, and M. F. Hawthorne, J. Amer. Chem. Soc., 1972, 94, 8391.
 ⁷ B. F. G. Johnson, J. Lewis, and D. A. White, J. Amer. Chem. Soc., 1969, 91, 5186.
 ⁸ T. A. George and M. F. Hawthorne, J. Amer. Chem. Soc., 1969, 91, 5475.