Aluminium-27 Nuclear Magnetic Resonance: Octahedral and Tetrahedral Solvates of the Aluminium Cation

By JEAN-J. DELPUECH,* MOHAMED R. KHADDAR, ALAIN PEGUY, and PATRICE RUBINI

(Laboratoire de Chimie Physique Organique; Université de Nancy I; C.O. nº 140; 54037-Nancy Cedex, France)

Summary The existence of octahedral solvates of the Al³⁺ cation with trimethyl phosphate, dimethyl methylphosphonate, and dimethyl phosphite and a tetrahedral solvate of hexamethylphosphoramide, is shown by their ²⁷Al n.m.r. spectra in nitromethane.

THE aluminium perchlorates $Al(TMP)_{6}^{3+}, 3ClO_{4}^{-}$ (1), $Al-(DMMP)_{6}^{3+}, 3ClO_{4}^{-}$ (2), and $Al(DMP)_{6}^{3+}, 3ClO_{4}^{-}$ (3) $[TMP = PO(OMe)_{3}; DMMP = MePO(OMe)_{2}; DMHP = HPO(OMe)_{2}]$ can be prepared in the solid state¹ by standard methods, and their high resolution n.m.r. spectra can be measured in nitromethane as inert solvent. The ¹H n.m.r. spectrum of (1) has been obtained under these conditions,² but it does not yield such detailed information as may be obtained from ³¹P^{3,4} or ²⁷Al⁵ spectroscopy.

The ²⁷Al n.m.r. spectra of compounds (1)—(3) were accordingly examined in nitromethane solution. A sharp heptet is obtained at 22.63 MHz and 0° C, using a Bruker HX-90 spectrometer operating at variable field, and equipped with a Nicolet 1080 Fourier Transform unit. The number of lines, and their relative intensities (1:6:15: 20:15:6:1), demand an octahedral arrangement of six equivalent ligands around the aluminium cation, with a coupling constant between phosphorus and the solvated metal nucleus, $P=O\cdots Al^{3+}$ of 19.5, 15.0, and 13.4 Hz respectively for (1), (2), and (3). The cubic symmetry of these solvates ensures exceptionally sharp lines. Upon addition of small quantities of water mixed octahedral solvates, $S_1 = AlX_i(H_2O)_{6-1}^{3+}$, are produced, as shown by the appearance of broad signals superimposed upon the previous multiplet. Up to two extra signals are obtained in this way, from S_5 and S_4 . The other solvates: S_0 [*i.e.* $Al(H_2O)_6^{3+}$], S_1 , S_2 , and S_3 have already been described under quite different conditions,⁵ from a mixture of water, organo-

TABLE. ²⁷Al chemical shifts for Al³⁺ solvates, $S_1 = AlX_1 - (H_2O)_{6-1}^{3+}$ [p.p.m., upfield from Al(H₂O)₆³⁺].

х	S_0	S_1	S_2	S ₃	S_4	S_5	S_6
TMP	0	3.7ª	6.7ª	10.0^{a}	14.0	17.5	20.5
\mathbf{DMMP}	0	$3 \cdot 5$	6.8	10.1	14.8	17.5	20.2
DMHP	0	3.3	6.6	9.1	14.0	15.9	17.7

^a From ref. 5.

phosphorus solvent, and aluminium perchlorate. The chemical shifts, δ , obtained from the two methods (see Table) show an important point: the additivity of δ when substituting a water molecule by an organic ligand, which does not depend upon the solvent (*ca.* 3.5 p.p.m. per substitution). These results also show that the phosphoryl oxygen is a better electron-donor to the aluminium cation than the water oxygen, since all shifts are upfield relative to S₀.

Similar experiments with $Al(HMPA)_{4}^{3+}$, $3ClO_{4}^{-}(4)$ (HMPA = hexamethylphosphoramide) yield very different results. A

sharp quintet is obtained at -32 °C, with intensities in the ratio 1:4:6:4:1. This is clear evidence for a tetrahedral arrangement of four HMPA ligands around Al³⁺, as already found with the Be²⁺ cation.⁴ In support of this structure, ²/ (³¹P-²⁷Al) increases considerably (30 vs. 19.5 Hz for TMP); this is in agreement with the classical dependency upon the proportion of s character in the aluminium atomic orbitals, *i.e.*, 1/6 for d^2sp^3 in (1) and 1/4 for sp^3 in (4). Further, the chemical shift is downfield (-34.11)p.p.m.) relative to $Al(H_2O)_6^{3+}$, as may be expected for the lower total number of ligands. The addition of water is not accompanied by the appearance of other signals. Rather the multiplet broadens and shifts upfield; it completely disappears for a ratio of H_2O ; Al^{3+} of ca. 10; 1. However, one broad signal is obtained for an aqueous solution of

HMPA and $Al(ClO_4)_3$, at 4 p.p.m. upfield from $Al(H_2O)_6^{3+}$, corresponding to solvation numbers of ca. 0.5 and 5.5 for HMPA and H_2O , *i.e.*, to an octahedral mixed solvate S_1 . This clearly shows the possibility of octahedral co-ordination for water-rich solvates, and of a tetrahedral solvate: $S_4 = Al(HMPA)_4^{3+}$ in anhydrous MeNO₂. Mixed tetrahedral solvates seem to be precluded, and addition of water probably results in the production of octahedral mixed solvates, rapidly exchanging their ligands with S_4 (tet.).

Financial support from the Direction des Recherches et Moyens d'Essais and from the Centre National de la Recherche Scientifique is gratefully acknowledged.

(Received, 20th November 1973; Com. 1617.)

¹ N. M. Karayannis, E. E. Bradshaw, L. L. Pytlenski, and M. M. Labes, J. Inorg. Nuclear Chem., 1970, 32, 1079.

² L. S. Frankel, and E. R. Danielson, *Inorg. Chem.*, 1972, 11, 1964. ³ C. Beguin, J. J. Delpuech, and A. Peguy, *Mol. Phys.*, 1969, 7, 317; J. J. Delpuech, A. Peguy and M. R. Khaddar, *J. Electroanalyt. Chem.*, 1971, 29, 31.

⁴ J. J. Delpuech, A. Peguy, and M. R. Khaddar, J. Magnetic Resonance, 1972, 6, 325.
⁵ D. Canet, J. J. Delpuech, M. R. Khaddar, and P. Rubini, J. Magnetic Resonance, 1973, 9, 329, and references therein.
⁶ M. Barfield and D. M. Grant, Adv. Magnetic Resonance, 1965, 1, 149; G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, J. Amer. Chem. Soc., 1964, 86, 5564; G. E. Maciel, J. W. McIver, jun., N. S. Ostlund, and J. A. Pople, *ibid.*, 1970, 92, 1, 11.