Aluminium-27 Nuclear Magnetic Resonance: Octahedral and Tetrahedral Solvates of the Aluminium Cation

By Jean-J. Delpuech,* Mohamed R. Khaddar, Alain Peguy, and Patrice Rubini
(Laboratoire de Chimie Physique Organique; Université de Nancy I; C.O. $n^{\circ} 140 ; 54037$-Nancy Cedex, France)

Summary The existence of octahedral solvates of the Al^{3+} cation with trimethyl phosphate, dimethyl methylphosphonate, and dimethyl phosphite and a tetrahedral solvate of hexamethylphosphoramide, is shown by their ${ }^{27} \mathrm{Al}$ n.m.r. spectra in nitromethane.

The aluminium perchlorates $\mathrm{Al}(\mathrm{TMP})_{6}{ }^{3+}, 3 \mathrm{ClO}_{4}{ }^{-}(\mathbf{1})$, Al$(\mathrm{DMMP})_{6}{ }^{3+}, 3 \mathrm{ClO}_{4}{ }^{-}(2)$, and $\mathrm{Al}(\mathrm{DMP})_{6}{ }^{3+}, 3 \mathrm{ClO}_{4}{ }^{-}(\mathbf{3})[\mathrm{TMP}=$ $\left.\mathrm{PO}(\mathrm{OMe})_{3} ; \mathrm{DMMP}=\mathrm{MePO}(\mathrm{OMe})_{2} ; \mathrm{DMHP}=\mathrm{HPO}(\mathrm{OMe})_{2}\right]$ can be prepared in the solid state ${ }^{1}$ by standard methods, and their high resolution n.m.r. spectra can be measured in nitromethane as inert solvent. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (1) has been obtained under these conditions, ${ }^{2}$ but it does not yield such detailed information as may be obtained from ${ }^{31} \mathrm{P}^{3,4}$ or ${ }^{27} \mathrm{Al}^{5}$ spectroscopy.

The ${ }^{27} \mathrm{Al}$ n.m.r. spectra of compounds (1)-(3) were accordingly examined in nitromethane solution. A sharp heptet is obtained at 22.63 MHz and $0^{\circ} \mathrm{C}$, using a Bruker HX-90 spectrometer operating at variable field, and equipped with a Nicolet 1080 Fourier Transform unit. The number of lines, and their relative intensities ($1: 6: 15$: $20: 15: 6: 1$), demand an octahedral arrangement of six equivalent ligands around the aluminium cation, with a coupling constant between phosphorus and the solvated metal nucleus, $\mathrm{P}=\mathrm{O} \cdots \mathrm{Al}^{3+}$ of $19.5,15 \cdot 0$, and 13.4 Hz respectively for (1), (2), and (3). The cubic symmetry of these solvates ensures exceptionally sharp lines. Upon
addition of small quantities of water mixed octahedral solvates, $\mathrm{S}_{\mathrm{i}} \equiv \mathrm{AlX}_{\mathrm{i}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8-1}^{3+}$, are produced, as shown by the appearance of broad signals superimposed upon the previous multiplet. Up to two extra signals are obtained in this way, from S_{5} and S_{4}. The other solvates: S_{0} [i.e. $\left.\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right], \mathrm{S}_{1}, \mathrm{~S}_{2}$, and S_{3} have already been described under quite different conditions, ${ }^{5}$ from a mixture of water, organo-

Table. ${ }^{27} \mathrm{Al}$ chemical shifts for Al^{3+} solvates, $\mathrm{S}_{1} \equiv \mathrm{AlX}_{\mathrm{i}}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-1}^{3+}$ [p.p.m., upfield from $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$].

X	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	S_{4}	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$
TMP	0	$\mathbf{3 \cdot 7} 7^{\mathrm{a}}$	$6 \cdot 7^{\mathrm{a}}$	$10 \cdot 0^{\mathrm{a}}$	$14 \cdot 0$	$17 \cdot 5$	$20 \cdot 5$
DMMP	0	$\mathbf{3 \cdot 5}$	$6 \cdot 8$	$10 \cdot 1$	$14 \cdot 8$	$17 \cdot 5$	$20 \cdot 2$
DMHP	0	$\mathbf{3 \cdot 3}$	$6 \cdot 6$	$9 \cdot 1$	$14 \cdot 0$	$15 \cdot 9$	$17 \cdot 7$

${ }^{a}$ From ref. 5.
phosphorus solvent, and aluminium perchlorate. The chemical shifts, δ, obtained from the two methods (see Table) show an important point: the additivity of δ when substituting a water molecule by an organic ligand, which does not depend upon the solvent (ca. $3 \cdot 5$ p.p.m. per substitution). These results also show that the phosphoryl oxygen is a better electron-donor to the aluminium cation than the water oxygen, since all shifts are upfield relative to S_{0}.

Similar experiments with $\mathrm{Al}(\mathrm{HMPA})_{4}^{3+}, 3 \mathrm{ClO}_{4}^{-}(4)(\mathrm{HMPA}$ $=$ hexamethylphosphoramide) yield very different results. A
sharp quintet is obtained at $-32^{\circ} \mathrm{C}$, with intensities in the ratio 1:4:6:4:1. This is clear evidence for a tetrahedral arrangement of four HMPA ligands around Al^{3+}, as already found with the Be^{2+} cation. ${ }^{4}$ In support of this structure, ${ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{27} \mathrm{Al}\right)$ increases considerably (30 vs. $19 \cdot 5$ Hz for TMP); this is in agreement with the classical dependency upon the proportion of s character in the aluminium atomic orbitals, i.e., $1 / 6$ for $d^{2} s p^{3}$ in (1) and $1 / 4$ for $s p^{3}$ in (4). Further, the chemical shift is downfield ($-34 \cdot 11$ p.p.m.) relative to $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$, as may be expected for the lower total number of ligands. The addition of water is not accompanied by the appearance of other signals. Rather the multiplet broadens and shifts upfield; it completely disappears for a ratio of $\mathrm{H}_{2} \mathrm{O}: \mathrm{Al}^{3+}$ of $c a .10: 1$. However, one broad signal is obtained for an aqueous solution of

HMPA and $\mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3}$, at 4 p.p.m. upfield from $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$, corresponding to solvation numbers of $c a .0 .5$ and 5.5 for HMPA and $\mathrm{H}_{2} \mathrm{O}$, i.e., to an octahedral mixed solvate $\mathrm{S}_{\mathbf{1}}$. This clearly shows the possibility of octahedral co-ordination for water-rich solvates, and of a tetrahedral solvate: $\mathrm{S}_{4} \equiv \mathrm{Al}(\mathrm{HMPA})_{4}^{3+}$ in anhydrous MeNO_{2}. Mixed tetrahedral solvates seem to be precluded, and addition of water probably results in the production of octahedral mixed solvates, rapidly exchanging their ligands with S_{4} (tet.).

Financial support from the Direction des Recherches et Moyens d'Essais and from the Centre National de la Recherche Scientifique is gratefully acknowledged.
(Received, 20th November 1973; Com. 1617.)
${ }^{1}$ N. M. Karayannis, E. E. Bradshaw, L. L. Pytlenski, and M. M. Labes, J. Inorg. Nuclear Chem., 1970, $32,1079$.
${ }^{2}$ L. S. Frankel, and E. R. Danielson, Inorg. Chem., 1972, 11, 1964.
${ }^{3}$ C. Beguin, J. J. Delpuech, and A. Peguy, Mol. Phys., 1969, 7, 317; J. J. Delpuech, A. Peguy and M. R. Khaddar, J. Electroanalyt. Chem., 1971, 29, 31.
${ }_{5}^{4}$ J. J. Delpuech, A. Peguy, and M. R. Khaddar, J. Magnetic Resonance, 1972, 6, 325.
${ }^{5}$ D. Canet, J. J. Delpuech, M. R. Khaddar, and P. Rubini, J. Magnetic Resonance, 1973, 9, 329, and references therein.
${ }^{6}$ M. Barfield and D. M. Grant, Adv. Magnetic Resonance, 1965, 1, 149; G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, J. Amer. Chem. Soc., 1964, 86, 5564; G. E. Maciel, J. W. McIver, jun., N. S. Ostlund, and J. A. Pople, ibid., 1970, 92, $1,11$.

