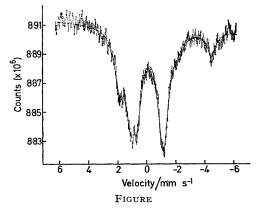
¹²⁹Iodine Mössbauer Studies of the Purportedly Five-co-ordinated Compounds $\{M[N(CH_2CH_2NMe_2)_3]I\}I, M=Ni^{II} \text{ or } Zn^{II}\}$

By MARY J. POTASEK and PETER G. DEBRUNNER

(Department of Physics)

and WILLIAM H. MORRISON, JR. and DAVID N. HENDRICKSON*

(School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801)


Summary The Mössbauer spectra of the two ¹²⁹I atoms in $M[N(CH_2CH_2NMe_2)_3]I_3$, M = Ni or Zn are indistinguishable; this result is contrary to the five-co-ordinated trigonal bipyramidal structure proposed for these complexes.

¹²⁹I MÖSSBAUER spectroscopy is sensitive to the distribution of iodine valence electrons and is useful for differentiating between different ligand co-ordinations. Therefore we have initiated a Mössbauer study of the bonding of iodine in various transition-metal complexes. In the course of these studies we obtained very interesting spectra for $Zn(Me_6$ tren)I₂ and Ni(Me₆tren)I₂, Me₆tren = N(CH₂CH₂NMe₂)₃. This communication presents a first analysis of the data.

Ciampolini and Nardi¹ have concluded from conductivity, magnetic, and electronic absorption measurements that the quadridentate ligand Me₆tren forms five-co-ordinated complexes with first-row transition elements of the type [M(Me₆tren)X]X where X = Cl, Br, I, NO₃, ClO₄, or SCN. The structures of only [M(Me₆tren)Br]Br where M = Mn,² Fe,² Co,³ Ni,⁴ Cu,⁴ and Zn,² and [Ni(Me₆tren)NCS]SCN⁵ have been substantiated by single-crystal X-ray studies. Accordingly it was of interest to measure the ¹²⁹I Mössbauer spectra of Zn(Me₆tren)I₂ and Ni(Me₆tren)I₂.

Analytically pure samples were synthesized using ¹²⁹I and their physical properties agreed with those reported in the literature. The 4.2 K ¹²⁹I Mössbauer spectrum of a solid sample of $\text{Zn}(\text{Me}_{6}\text{tren})\text{I}_{2}$ is shown in the Figure. Here the solid line is the result of a least-squares computer fit

of a theoretical spectrum to the data (normalized $\chi^2 = 0.8$). The spectrum shows that the two iodine atoms are equivalent with a nuclear quadrupole coupling constant of $e^2q^{129}Q = -348 \pm 25$ MHz, an isomer shift of $\delta = -0.35 \pm 0.05$ mm s⁻¹ relative to the Zn¹²⁹mTe source, and an asymmetry parameter of $\eta = 0.17 \pm 0.04$. Furthermore the spectrum of Ni(Me₆tren)I₂ gives the same parameters, indicating that the iodines are binding in the same way in

both complexes. In addition, measurements of the complexes in a nitromethane glass (ca. $10^{-2}M$) at 4.2 K gave the same Mössbauer parameters as in the solid state. It is clear that neither $Zn(Me_6tren)I_2$ nor Ni(Me_6tren)I_2 can be

formulated as [M(Me₆tren)I]I; it remains for single-crystal X-ray work to determine the correct structure.

One of the most important contributions of this study is a demonstration of the sensitivity of ¹²⁹I Mössbauer measurements for investigating the character of the bonding between an iodide ion and a transition metal. In another ¹²⁹I Mössbauer study of such an interaction, a quadrupole coupling constant of $e^2q^{129}Q = -1040 \pm 25$ MHz ($\hat{\delta} =$ $0.19 \pm 0.05 \text{ mm s}^{-1}$ relative to the $\text{Zn}^{129\text{m}}\text{Te}$ source and $\eta = 0.03 \pm 0.03$) was found⁶ for the metal-bound iodine in $[(\pi-C_5H_5)_2Ru^{129}I]^{129}I_3$. In comparison, the iodines in $Zn(Me_{6}tren)I_{2}$ and $Ni(Me_{6}tren)I_{2}$ are much more ionic than the ruthenium-bound iodine.

Preliminary ¹²⁹I Mössbauer measurements on Co(Me₆tren)I, show the presence of both a free iodide and a cobaltbound iodine which is compatible with the single-crystal X-ray study³ on [Co(Me₆tren)Br]Br. Additional ¹²⁹I Mössbauer experiments are planned on the other transition metal-iodine complexes in the series.

This work was supported in part by the National Science Foundation and by the National Institute of Health.

(Received 13th November 1973; Com. 1565.)

¹ M. Ciampolini and N. Nardi, Inorg. Chem., 1966, 5, 1150; M. Ciampolini and N. Nardi, ibid., 1966, 5, 41.

- ² M. Di Vaira and P. L. Orioli, Acta Cryst., 1968, B24, 1269.
 ³ M. Di Vaira and P. L. Orioli, Inorg. Chem., 1967, 6, 955.
- ⁵ M. Di Vaira and P. L. Orioli, Acta Cryst., 1968, B24, 595.
- ⁵ I. Bertini, M. Ciampolini, P. D. Apporto, and D. Gatteschi, Acta Cryst., 1972, 11, 2254.
 ⁶ M. J. Potasek, P. G. Debrunner, W. H. Morrison, Jr., and D. N. Hendrickson, J. Chem. Phys., in the press.