Convenient Synthesis of Crystalline 1a,25-Dihydroxyvitamin D₃

By DEREK H. R. BARTON, ROBERT H. HESSE,* MAURICE M. PECHET, and EZIO RIZZARDO (Research Institute for Medicine and Chemistry, Cambridge, Massachusetts 02142)

Summary Crystalline 1α ,25-dihydroxyvitamin D₃ has been prepared from 25-hydroxycholesterol through an efficient eight-step synthesis.

ALTHOUGH the substance has never been obtained crystalline or adequately characterized by physical constants the structure (1) 1α ,25-dihydroxyvitamin D₃, has been attributed to the important, rapid-acting, natural metabolite of vitamin D₃.¹ A 21-step synthesis of (1) has recently been claimed,² but again the compound was not obtained crystalline and its physical properties as well as those of key synthetic intermediates were not given.

We have recently reported a convenient synthesis of $l\alpha$ -hydroxyvitamin D_3 involving as a key step the reductive conversion of a $l\alpha, 2\alpha$ -epoxy-4,6-dien-3-one into a $l\alpha, 3\beta$ -dihydroxy-5-ene sterol.³ We now report the application of this procedure to an efficient, unambiguous synthesis of crystalline $l\alpha, 25$ -dihydroxyvitamin D_3 and record here the physical properties thereof.[†]

Dehydrogenation (dichlorodicyanoquinone^{3,4}) of 25-hydroxycholesterol⁵ afford the trienone (2) (m.p. 183–184°, $[\alpha]_{D}$ -12°) which was converted (alkaline H_2O_2) into the epoxide (3) (m.p. 162–163°, $[\alpha]_D + 179°$). Reduction of the epoxide (3) (metallic and NH₄Cl in ammonia-tetrahydrofuran³) led to the important intermediate 1α , 25-dihydroxycholesterol (4a) {m.p. 171-173° (solidifies and remelts 178—179°), $[\alpha]_D = 35°$, ¹H n.m.r. 0.67 (3H, s, 13-Me), 1.02 (3H, s, 10-Me), 1.20 (6H, s, 25-Me2), 3.86 (2H, narrow m, 1-H, and br m 3-H), 5.60 (1H, narrow m 6-H)}. Conversion of (4a) into the triacetate (4b) (Ac₂O-pyridine) followed by bromination (dibromodimethylhydantoin⁶) and dehydrobromination (trimethyl phosphite⁶) afforded the usual mixture of dienes from which the desired $\Delta^{5,7}$ -diene triacetate (5)² was isolated by chromatography on AgNO₃impregnated silica gel (m.p. 96-101°, $[\alpha]_D - 24^\circ$). Irradiation of (5) (medium-pressure mercury lamp³) led to a mixture of photo-isomers from which the remaining diene (5) was recovered by chromatography on $AgNO_3$ -impregnated silica gel. The balance of the irradiation product, which comprised largely the previtamin triacetate (6a) (based on the

iodine-catalysed transformation of the previtamin into the tachysterol analogue⁷) was heated at 70° for 2 h to effect equilibration of (**6a**) and the triacetate of (**1**). Saponification (5% KOH in MeOH) led to a mixture of triols from which

† All new compounds had the appropriate spectral properties and, with the exception of the non-crystalline (4b) and (6), had the required composition (combustion microanalysis). All $[\alpha]_D$ are in CHCl₃ except for $1\alpha,25$ -dihydroxyvitamin D_3 . λ_{max} . data are in nm and n.m.r. data in δ for CDCl₃ solution.

the desired (1) was isolated by preparative t.l.c. 1α , 25-Dihydroxyvitamin D_3 (1) precipitated from ether with hexane had: m.p. 84–88°, $[\alpha]_{D}$ +29° (in Et₂O), λ_{max} (Et₂O) 264 (18,000), λ_{min} 228.5 (10,100), ¹H n.m.r. 0.57 (3H, s, 18-Me), 1.13 (6H, s, 25-Me2), 4.85 and 5.30 (2H, double narrow m 10-CH₂), and 6.20 (2H, AB q, J 11.5 Hz, 6- and 7-H). Crystallized from CHCl₃ (1) was obtained as the mono-chloroform solvate, m.p. 106-112°. On treatment with I_2 (1) underwent a smooth transformation accompanied by spectral changes analogous to those accompanying the transformation of vitamin D_3^8 and 1α hydroxyvitamin D₃³ into the corresponding 5,6-transisomers. These physical and spectral properties are consistent with and required by structure (1) and are not J.C.S. CHEM. COMM., 1974

compatible with any of the other triene isomers (or transformation products thereof) encountered in the vitamin D₃ series.

Preliminary biological data indicate that the 1α , 25-dihydroxyvitamin D_{2} , (1) has the expected properties as evidenced by its ability to raise rapidly the level of serum calcium in parathyroidectomized-thyroidectomized rats. Our synthesis is a confirmation of the proposed structure.

Since the completion of this work additional syntheses of 1α -hydroxyvitamin D₃ have been reported.^{9,10} Recently¹¹ a synthesis of 1α , 25-dihydroxycholesterol (4a) has been described.

(Received, 5th December 1973; Com. 1650.)

¹ M. F. Holick, H. K. Schnoes, H. F. DeLuca, T. Suda, and R. J. Cousins, Biochemistry, 1971, 10, 2799; A. W. Norman, J. F. Myrtle, R. J. Midgett, and H. G. Nowicki, Science, 1971, 173, 51; D. E. M. Lawson, D. R. Fraser, E. Kodicek, H. R. Morris, and D. H. Williams, Nature, 1971, 230, 228.

²¹ E. J. Semmler, M. F. Holick, H. K. Schnoes, and H. F. DeLuca, *Tetrahedron Letters*, 1972, 40, 4147.
 ³² D. H. R. Barton, R. H. Hesse, M. M. Pechet, and E. Rizzardo, *J. Amer. Chem. Soc.*, 1973, 95, 2748.
 ⁴ E. Glotter, M. Weissenberg, and D. Lavie, *Tetrahedron*, 1970, 26, 3857; A. B. Turner, *J. Chem. Soc.* (C), 1968, 2568.

- A. I. Ryer, W. H. Gebert, and N. M. Murrell, J. Amer. Chem. Soc., 1950, 72, 4247; W. G. Dauben and H. L. Bradlow, ibid., p. 4248. ⁶ F. Hunziker and F. X. Muller, Helv. Chim. Acta, 1958, 41, 70.
- 7 A. L. Koevoet, A. Verloop, and E. Havinga, Rec. Trav. chim., 1955, 74, 788.
- ⁸ A. Verloop, A. L. Koevoet, and E. Havinga, Rec. Trav. chim., 1955, 74, 1125.

- ⁹ R. G. Harrison, B. Lythgoe, and P. W. Wright, *Tetrahedron Letters*, 1973, 3649.
 ¹⁰ A. Fürst, L. Labler, W. Meier, and K.-H. Pfoertner, *Helv. Chim. Acta*, 1973, 56, 1708.
- 11 J. Rubio-Lightbourn, M. Morisaki, and N. Ikekawa, Chem. Pharm. Bull. (Japan), 1973, 21, 1854.