J.C.S. CHEM. COMM., 1974

Phosphorus Chemistry: Reaction Between White Phosphorus and Bis- π -cyclopentadienylmolybdenum Dihydride Forming a MoP₂H₂ System

By Jennifer C. Green, Malcolm L. H. Green,* and George E. Morris (Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

Summary White phosphorus reacts with bis- π -cyclopenta-dienylmolybdenum dihydride giving the diphosphane derivative $(\pi-C_5H_5)_2\text{MoP}_2H_2$.

It is well known that white phosphorus reacts with aqueous sodium hydroxide forming phosphine and diphosphine, as well as oxyacid salts. Also, it has been shown that the P_4 molecule may act as a ligand in some manner in complexes such as $RhCl(P_4)(PPh_3)_2$. These and other observations led us to study reactions between transition-metal hydrides and white phosphorus.

Treatment of the dihydride $(\pi-C_5H_5)_2\text{MoH}_2$ (I) in toluene with excess of white phosphorus at 90° causes smooth reaction and, following purification by chromatography on alumina, a deep red crystalline compound (II) is isolated. Analysis, the mass spectrum, and molecular weight determination show the compound (II) to have the stoicheiometry corresponding to the formulation $(\pi-C_5H_5)_2\text{MoP}_2\text{H}_2$ $[m/e, 292 \ C_{10}\text{H}_{12}^{98}\text{MoP}_2^+, M(\text{cryoscopic in benzene}), 270 (reqd. 290)]$. The compound (II) is soluble in benzene and the solutions are readily decomposed by oxygen. The ¹H

and ³¹P n.m.r. spectra suggest a structure for the complex (II) in which each of the two $(\pi-C_5H_5)$ groups, the two phosphorus atoms, and two P-hydrogens are equivalent respectively {¹H n.m.r., δ [(CD₃)₂SO; 60 MHz; external Me₄Si]: 5·88 [10H, t, J(³¹P- π -C₅H₅) 1·0 Hz, $2 \times \pi$ -C₅H₅] and 0·19 (2H, complex m, symmetrical band typical of an AA'XX'

$$(\pi - C_5H_5)_2MoH_2+P_4$$
 $trans-$
(IIa)

 $trans-$
(IIb)

system). The separation between the two outer, most intense bands is 160 Hz, and this value may be assigned to $J_{\rm PH}+J_{\rm PH'}$. ³¹P n.m.r. [(CD₃)₂SO; 36·43 MHz; external H₃PO₄]: 203 p.p.m., complex symmetrical band typical of AA'XX' system. The i.r. spectrum (mulls) shows a band

typical of a $(\pi - C_5H_5)_2$ Mo system and a strong, sharp band at 2240 cm⁻¹ which may be assigned to ν_{P-H} . The data do not permit distinction between the *trans*- or fluxional *cis*-configurations (IIa or IIb respectively); a structure with a planar MoP₂H₂ system is also consistent with the spectra. The latter, however, seems less likely since phosphorus normally has an essentially tetrahedral distribution of electron pairs. The P₂H₂ molecule, and di-imine N₂H₂,

are isoelectronic with ethylene so that we prefer to propose that compound (II) is similar to the ethylene derivative $(\pi-C_5H_5)_2\text{Mo}(C_2H_4)$.²

The compound (II) clearly provides a model for di-iminemetal derivatives, which have been envisaged to occur as intermediates in dinitrogen fixation.

(Received, 13th December 1973; Com. 1688.)

¹ A. P. Ginsberg and W. E. Lindsell, J. Amer. Chem. Soc., 1971, 93, 2082. ² F. W. S. Benfield, B. R. Francis, and M. L. H. Green, J. Organometallic Chem., 1972, 44, C13; J. L. Thomas, J. Amer. Chem. Soc., 1973, 95, 1838.