Hydrolysis of Oxiranylmethyl Tosylates

By MAURICE SANTELLI

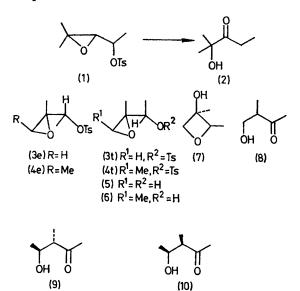
(Laboratoire Associe au C.N.R.S. N 109, Pl. V. Hugo, 13331 Marseille, France)

Summary The participation of the oxiran carbon-carbon bond during hydrolysis of oxiranylmethyl tosylates gives rise to a 2-oxocyclobutyl cation which is further hydrolysed to a ketol.

ONE interesting aspect of studies of the participation of the oxiranyl group is in determining if the stabilisation of the electron-deficient carbon is due to the unshared, lone pair of the oxygen, or to a conjugation of the oxiran ring,¹ or to both these effects.²

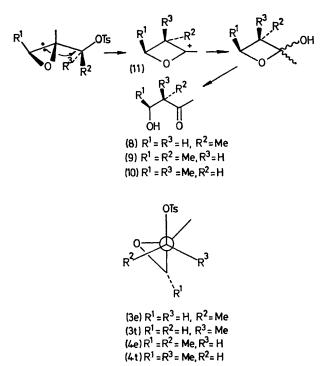
We present here results on the hydrolysis of oxiranylmethyl tosylates in the presence of a buffer [CaCO₃ for preparative scale, and (-)-nicotine for kinetic results]. Whereas the tosylate (1) gives only the α -ketol (2), the tosylates (3t), (3e), (4t), and (4e) give mainly β -ketols

The structure of the ketols (9) and (10) was determined by reduction with LiAlH₄ to 3-methylpentane-2,4-diol³ and comparison of its n.m.r. spectra with those of the four known isomers.⁴ β -Ketols result from participation of the C-C bond of the oxiran yielding the oxetan-2-yl cation (11). The behaviour of this cation is inferred from that of alkoxycations occurring in the acid-catalysed hydrolysis of acetals.⁵ The stereochemistry of the ketol (10) obtained from (4t) shows that hydrolysis occurs with inversion of configuration of the functional carbon [this result is only partially observed for (4e), where a mixture of (9) and (10) is obtained]. This stereospecificity requires the C-OTs and


TABLE.	Rates	of	hyd:	rol	ysis ^a
--------	-------	----	------	-----	-------------------

Tosylates	104k, first order, 80.8 °C
(3e) (3t)	$4.3 \pm 0.1 \\ 5.1 \pm 0.15$
(4e) (4t) (12)°	$rac{6.7\pm0.18^{ extbf{b}}}{13.8\pm0.35^{ extbf{b}}}\ 31.5\pm0.8^{ extbf{b}}$

^a Solvent dioxan-water (50:50 v/v), 0.035M-tosylate, buffer (-)-nicotine. The formation of (+)-nicotine-H⁺ was followed polarimetrically at 436 nm. ^b Values extrapolated from 60 and 70 °C. ^c (12) = 2,2,3-trimethylpropyl tosylate.


C-C bonds to be antiperiplanar in the conformation leading to the transition state. In this case the interactions between non-bonded atoms are more important for the *erythro*-isomers (3e) and (4e) ($\mathbb{R}^2 = \mathrm{Me}$) where the C-O

bond of the oxiran and the C-Me bond are almost eclipsed. This observation can explain the existence of a non-stereospecific process in that case.

 \rightarrow (5) (5%) + (7) (13%) + (8) (82%) (8)(12.5%) + (9) (59%) + (10) (28.5%)

The kinetic results are in agreement with this: (a) the threo-isomers are hydrolysed faster than the erythro ones [k(3t)/k(3e) = 1.18, k(4t)/k(4e) = 2.06 at 80.8 °C]; (b) a methyl group β to the functional carbon ($\mathbb{R}^1 = \mathbb{M}e$), in each diastereoisomer, increases the rate of hydrolysis [k(4e)/k(3e) = 1.55, k(4t)/k(3t) = 2.7 at 80.8 °C].

We conclude from these observations that the oxiranyl group shows in participation reactions a reactivity analogous to that of the cyclopropane ring. It is well known that derivatives of (1-methylcyclopropyl)methyl are solvolysed to yield as major product the 1-methylcyclobutyl cation.⁶ Similarly, we obtained the 2-methyl-2-oxetanyl cation from oxiranyl derivatives.

(Received, 14th December 1973; Com. 1691.)

¹ H. G. Richey, Jr., 'Carbonium Ions', Wiley-Interscience, New York, 1972, vol. 3, p. 1201; D. L. Whalen, J. Amer. Chem. Soc., 1970, 92, 7619; A. Padwa, N. C. Das, and D. Eastman, *ibid.*, 1969, 91, 5178; H. G. Richey, Jr., and D. V. Kinsman, Tetrahedron Letters, 1969, 2505. *W. C. Danen, J. Amer. Chem. Soc., 1972, 94, 4835.

* Reduction of β -aminoketones or β -hydroxyketones with chiral centres in both the α - and β -positions by complex hybrides proceeds without racemisation: M. J. Lyapova and B. J. Kurtev, Chem. Ber., 1969, 102, 3739; S. Yamada and K. Koga, Teirahedron Letters, 1967, 1711.

⁴ P. Maroni and P. Tisnes, Bull. Soc. Chim. France, 1972, 794.

⁸ E. H. Cordes, Progr. Phys. Org. Chem., 1967, 4, 1.

⁶ M. Hanack and H. J. Schneider, Fortschr. Chem. Forsch., 1967, 554.