Synthesis of Unsymmetrical Azoxyalkanes and Alkylazoxyarenes from Nitroso-compounds and NN-Dichloroamines

By F. RYAN SULLIVAN, ELIZABETH LUCK, and PETER KOVACIC*

(Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201)

Summary Unsymmetrical azoxyalkanes and alkylazoxyarenes are produced in good yields from nitroso-compounds and NN-dichloroamines in the presence of methanolic KOH; unsymmetrical azoxy-compounds containing tertiary-alkyl substituents can be prepared by this method.

SYNTHETIC approaches to unsymmetrical azoxyalkanes and alkylazoxyarenes have recently been reviewed.¹ Only the reaction of arylazoxy tosylates with Grignard reagents,² and the alkylation¹ of alkyl diazotates afford a single, predictable product, but both these reactions have limitations. We herein report a novel synthesis of azoxy compounds which has advantages over the prior techniques, and is applicable to unsymmetrical and symmetrical azoxyalkanes, as well as to alkylazoxyarenes [equation (1)].

$$\begin{array}{c} \text{KOH} \\ \text{R}^{1}\text{NCl}_{2} + \text{R}^{2}\text{NO} \xrightarrow{\text{KOH}} \text{R}^{1}\text{N} = \text{N}(\text{O})\text{R}^{2} \\ (1) \\ \text{(1)} \\ \\ \text{R}^{1} = \text{alkyl}; \text{R}^{2} = \text{alkyl or aryl} \end{array}$$

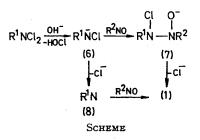
In a typical procedure, the NN-dichloroamine (0.01 mol), prepared by the reaction of the amine with calcium hypochlorite,³ was added to an equimolar quantity of the nitroso-compound in methanol. 50% aqueous KOH

(0.02 mol) was added dropwise to the mixture maintained at 25-30 °C which was then stirred until the colour faded. After work-up, the azoxy-compounds were purified by preparative g.l.c. Representative compounds which have been synthesized are in the Table.

TABLE Azoxy-compounds from R¹NCl₂ and R²NO

Compound	\mathbb{R}^1	R ²	Yield(%) ^a
(2)	Bu ^t	\mathbf{Ph}	80
(3)	Bun	\mathbf{Ph}	36 ^b
(4)	l-Adamantyl	Bute	49
(5) a	CMe ₂ CN	CMe ₂ CN ^e	48 ^f

^a Minimum yields (small scale runs). ^b 2:1 molar ratio of Bu^aNCl₂-PhNO; ref. 2. ^c Prepared by the method of W. D. Emmons, J. Amer. Chem. Soc., 1957, 79, 6522, from ButNHOH, H. Stetter and E. Smulders, Chem. Ber., 1971, 104, 917. ^d M.p. 36:5-37:5 °C⁴ identical to material prepared by an alternative route (RNHOH + RNO). O. Piloty and B. G. Schwerin, Chem. Ber., 1901, 34, 1863. ^t At 5 °C.


New compounds gave satisfactory elemental analyses, and the i.r.⁵ and n.m.r.⁶ spectra of the products were consistent with the designated structures.

We suggest mechanisms involving intermediates (7) or (8) (Scheme). Nucleophilic attack on the nitroso-group has

- ¹ R. A. Moss, M. J. Landon, K. M. Luchter, and A. Mamantov, J. Amer. Chem. Soc., 1972, 94, 4392.
 ² T. E. Stevens, J. Org. Chem., 1967, 32, 1641; 1964, 29, 311.
 ⁸ T. A. Kling, R. E. White, and P. Kovacic, J. Amer. Chem. Soc., 1972, 94, 7416.
 ⁴ J. G. Aston and G. T. Parker, J. Amer. Chem. Soc., 1934, 56, 1387.
 ⁵ B. W. Langley, B. Lythgoe, and L. S. Rayner, J. Chem. Soc., 1952, 4191.
 ⁴ J. B. T. M. Lythgoe, Lotter 2000,

- J. P. Freeman, J. Org. Chem., 1963, 28, 2508.
 J. H. Boyer, 'The Chemistry of the Nitro and Nitroso Groups,' ed. H. Feuer, Part 1, Interscience, 1969, p. 277.
 J. H. Boyer, 'Nitrenes,' ed., W. Lwowski, Interscience, 1970, p. 166.

been reported;7 there is also evidence8 for interaction between nitrene and nitroso-groups.

The present route is simple and gives reasonable yields; it also provides azoxyalkanes and alkylazoxyarenes containing tertiary-alkyl substituents, a type not readily obtainable by prior methods.¹

We thank the National Science Foundation for financial support, and Mr. R. E. White for helpful discussions and assistance.

(Received, 28th December 1973; Com. 1731.)