Thermal and Photochemical Decompositions of 5-exo- and 5-endo-Methyl-2cyano-3,4-diazapentacyclo[6,4,0,0^{2,6},0^{7,11},0^{10,12}]dodec-3-ene: A Lowered Stereoselectivity by the Steric Inhibitions of the Rotation of an Intermediate Nitrogen-containing Diradical

By TADASHI SASAKI,* SHOJI EGUCHI, and FUMIO HIBI

(Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464, Japan)

Summary Considerably lower stereoselective formation of the single inversion product was observed for 5-endo-methyl 2-cyano-3,4-diazapentacyclo[6,4,0,0^{2,6},0^{7,11},0^{10,12}]dodec-3-ene [endo-(3)] compared to its exo-isomer in their thermal and direct photodecompositions.

RECENTLY Condit and Bergman¹ have postulated that bicyclic pyrazolines [for example, *exo*-(1)] decompose *via* only one C–N bond cleavage in the rate-determining step, followed by the rotation of the C–C(N₂·) bond and loss of

nitrogen by a rear-side attack with the C-radical to afford predominantly the single inversion product (Scheme 1). We have therefore studied the decomposition of a pyrazoline which was constructed so that it suffered steric inhibition of rotation in the intermediate nitrogen-containing diradical, in view of this possible lowering of the stereoselectivity. We prepared the *exo*- and *endo*-isomers of compound (3) by addition of diazoethane to 8-cyanodeltacyclene.²†

The thermal and photochemical decomposition products are shown in Scheme 2 and the Table; these products were

† In the cycloaddition, a 86:14 mixture of exo- and endo-(3) was obtained in 76% yield, from which exo-(3), m.p. 83–84° was separated. For the decomposition of endo-(3), a 65:35 endo-exo-mixture was used. In exo-(3) $J_{5,6}$ is 3.0 Hz, while $J_{5,6}$ in endo-(3) is 8.7 Hz.

isolated by preparative g.l.c. and their structures were assigned on the basis of analytical and spectral data.¹§

Products formed in the thermal and photochemical TABLE decompositions of exo- and endo-(3)

Decomposition	Sub-	Products (%) ^a			(4)
conditions	strate	enao-(4)	exo-(4)	(5)	(0)
180° (30–200 Torr					
in N_2)	exo-(3)	69.4	8.8	21.8	0
	endo-(3)	$28 \cdot 9$	51.6	19.5	0
Direct irradiation ^b	exo-(3)	60.5	6.7	14.8	18.0
	endo-(3)	$22 \cdot 4$	50.7	12.3	14.6
Sensitised irradiation ^o	exo-(3)	9 3 ·3	6.7	0	0
	endo-(3)	62.5	37.5	0	0

^aG.l.c. analysis. ^b Irradiated with a 100-W high-pressure mercury lamp through Pyrex filter in 2.51×10^{-3} M ether solution at 25°. ^c Same as direct irradiation except presence of benzophenone sensitizer (40 mol. equiv.),

Both exo- and endo-(3) decompose with predominant inversion of configuration at the methyl substituted carbon. However, the stereoselectivity for endo-(3) is considerably lower than that for exo-(3) in the thermal and direct photodecompositions. The observed stereoselectivity for exo-(3)is approximately the same as those reported in the decompositions of 4-exo-methyl-2,3-diazabicyclo[3,3,1]oct-2-ene $[exo-(1)]^1$ and cis-3,5-dimethylpyrazoline,^{3,4} while a similar pattern of stereoselectivity is also reported for

endo-(1)¹ and trans-3,4-dimethylpyrazoline.^{5,6} Hence, the decreased stereoselectivity found for endo-(3) should have a characteristic steric origin; one of the most plausible rationalizations is the steric inhibition of rotation of the nitrogen-containing diradical intermediate (7) to (8) by the presence of 8-H, assuming that an initial N-C(CN) bond cleavage occurs.¶

In the sensitized photodecomposition, both exo- and endo-(3) gave predominantly endo-(4), in contrast to the results of the direct photodecomposition, although similar results have been reported for other systems;^{1,4} this could be rationalized by a slow ring closure of the triplet diradical.⁵

(Received, 20th November 1973; Com. 1505.)

‡ All new compounds reported here had satisfactory analyses.

§ Although the n.m.r. spectra of exo- and endo- (4) were very similar, characteristic signals were observed at δ 1.84 and 1.11 for 4-H of exo-(4) and 3-H of endo-(4), respectively; comparison with data for 2-endo-cyanopentacyclo [4,4,0,0^{2,4},0^{5,9},0^{8,10}] nonane, m.p. 50-51°, shows that $J_{3,4}$ for exo-(4) is ca. 4.5 Hz, and $J_{3,4}$ for endo-(4) is 7.5 Hz.

¶ A *π*-cyclopropane intermediate is not reasonable in the present system for the same reason as postulated in ref. 1.

¹ P. B. Condit and R. G. Bergman, Chem. Comm., 1971, 4. See also W. R. Roth and M. Martin, Annalen, 1967, 702, 1; D. H. White, P. B. Condit, and R. G. Bergman, J. Amer. Chem. Soc., 1972, 94, 7931.

^a T. Sasaki, S. Eguchi, M. Sugimoto, and F. Hibi, J. Org. Chem., 1972, 37, 2317.

⁸ R. J. Crawford and A. Mishra, J. Amer. Chem. Soc., 1966, 88, 3963. See also M. P. Schneider and R. J. Crawford, Canad. J. Chem., 1970, **48**, 628.

⁴ R. Moore, A. Mishra, and R. J. Crawford, *Canad. J. Chem.*, 1968, 46, 3305.
⁵ Cf. S. D. Nowacki, P. B. Do, and F. H. Dorer, *J.C.S. Chem. Comm.*, 1972, 273.