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Summary Considerably lower stereoselective formation of 
the single inversion product was observed for 5-endo-methyl 
2-cyano-3,4-diazapentacyclo [614,0,02~8,07 s11,010~12]dode~- 
3-ene [endo-(3)] compared to its exo-isomer in their 
thermal and direct photodecompositions. 

RECENTLY Condit and Bergmanl have postulated that 
bicyclic pyrazolines [for example, exo-( 1) ] decompose via  
only one C-N bond cleavage in the rate-determining step, 
followed by the rotation of the C-C(N,.) bond and loss of 
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SCHEME 1 

nitrogen by a rear-side attack with the C-radical to afford 
predominantly the single inversion product (Scheme 1). We 
have therefore studied the decomposition of a pyrazoline 
which was constructed so that i t  suffered steric inhibition of 
rotation in the intermediate nitrogen-containing diradical, 
in view of this possible lowering of the stereoselectivity. 
We prepared the exo- and endo-isomers of compound (3) by 
addition of diazoethane to 8-cyanodeltacyclene. 2T 
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SCHEME 2 

The thermal and photochemical decomposition products 
are shown in Scheme 2 and the Table; these products were 

t In the cycloaddition, a 86 : 14 mixture of em- and endo-(3) was obtained in 76 % yield, from which e%o-(3), m.p. 83-84' was separ- 
In exo-(3) Ju,s is 3-0 Hz, while Ju,6 in endo-(3) is 8.7 Hz. ated. For the decomposition of endo-@), a 66 : 36 endo-exo-mixture was used. 
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isolated by preparative g.1.c. and their structures were 
assigned on the basis of analytical and spectral data.$§ 

TABLE Products formed in the thermal and photochemical 
decompositions of exo- and endo-(3) 

Decomposition Sub- Products ( % ) a  
conditions strate endo-(4) exo-(4) (5) (6) 

180" (30-200 TOIT 
in N,) . . . . exo-(3) 69-4 8-8 21.8 0 

endo-(3) 28-9 51.6 19.5 0 
Direct irradiationb exo-(3) 60.5 6-7 14.8 18.0 

endo-(3) 22-4 50-7 12.3 14.6 
Sensitised irradiationc exo-(3) 93-3 6.7 0 0 

endo-(3) 62.5 37.5 0 0 

a G.1.c. analysis. b Irradiated with a 100-W high-pressure 
mercury lamp through Pyrex filter in 2-51 x 1 0 - a ~  ether 
solution a t  25'. C Same as direct irradiation except presence of 
benzophenone sensitizer (40 mol. equiv.) , 

Both exo- and end0-(3) decompose with predominant 
inversion of configuration a t  the methyl substituted carbon. 
However, the stereoselectivity for endo-(3) is considerably 
lower than that for exo-(3) in the thermal and direct photo- 
decompositions. The observed stereoselectivity for exo-(3) 
is approximately the same as those reported in the decom- 
positions of 4-exo-methyl-2,3-diazabicyclo [3,3,l]oct-2-ene 
[e:exo-( l)]' and cis-3,5-dimethylpyrazoline,*~~ while a 
similar pattern of stereoselectivity is also reported for 

$ All new compounds reported here had satisfactory analyses. 

endo-( 1) and trans-3,4-dimethylpyrazoline.6~6 Hence, the 
decreased stereoselectivity found for erizdo-(3) should have a 
characteristic steric origin; one of the most plausible 
rationalizations is the steric inhibition of rotation of the 
nitrogen-containing diradical intermediate (7) to (8) by the 
presence of 8-H, assuming that an initial N-C(CN) bond 
cleavage occurs.7 

In the sensitized photodecomposition, both exo- and 
endo-(3) gave predominantly endo-(4), in contrast to the 
results of the direct photodecomposition, although similar 
results have been reported for other ~ y s t e r n s ; ~ , ~  this could 
be rationalized by a slow ring closure of the triplet diradical.5 

(Received, 20th November 1973; Corn. 1505.) 

5 Although the n.m.r. spectra of exo- and endo- (4) were very similar, characteristic signals were observed at 6 1-84 and 1.11 for 4-H 
of exo-(4) and 3-H of endo-(4), respectively; comparison with data for 2-endo-cyanopentacyclo[4,4,0,08~4,06~n,08~1~]nonane, m.p. 60--61°, 
shows that Ja4 for exo-(4) is ca. 4-5 Hz, and Js,4 for endo-(4) is 7.6 Hz. 

7 A n-cyclopropane intermediate is not reasonable in the present system for the same reason as postulated in ref. 1. 
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