Reaction of Dinitrogen Tetroxide with Octaethylhemin in Dichloromethane: A meso-Substitution Reaction

By James C. Fanning* and T. L. Gray
(Department of Chemistry, Clemson University, Clemson, South Carolina 29631)
and N. Datta-Gupta
(Department of Natural Sciences, South Carolina State College, Orangeburg, South Carolina 29115)

Summary Octaethylhemin(I) reacts rapidly with $\mathrm{N}_{2} \mathrm{O}_{4}$ in CHCl_{2} to produce meso-tetranitromethyloctaethylhemin(II), a high-spin iron(III) complex with a porphyrin ligand fully substituted in all β - and meso-positions.

The meso-reactivity of porphyrins and metalloporphyrins has recently been under study ${ }^{1}$ and iron(III) porphyrins have been shown to be rather unreactive to meso-oxidation. ${ }^{1 a}$

We report that octaethylhemin(I) reacts rapidly with $\mathrm{N}_{2} \mathrm{O}_{4}$ ($\mathrm{l}: 10$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature in air, producing meso-tetranitromethyloctaethylhemin(II) in 48% yield. Compound (II) is an iron(III) complex with a porphyrin ligand having total β - and meso-substitution. A large excess of $\mathrm{N}_{2} \mathrm{O}_{4}$ was used in order to reduce the amount of partially substituted products and the separation problems that would result. Impurities were removed from com-
pound (II) by dissolving it in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and using columns of Sephadex LH-20 and talc. Compound (II) gave a satisfactory analysis, and its i.r. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ shows strong bands at 1537 and $1362 \mathrm{~cm}^{-1}$ indicative of covalently bound NO_{2} groups. The same solution has visible absorption bands at 642 (3800), 540 infl (7400), 510 (8300), and

(I)
(II)
$375 \mathrm{~nm}(38,600)$ (molar absorbances in parentheses)-a spectrum typical of iron(iII) porphyrins. A saturated CDCl_{3} solution of (II) has an ${ }^{1} \mathrm{H}$ n.m.r. spectrum displaying large paramagnetic shifts which would be expected for a high-spin iron(III) complex: $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right) \mathrm{CH}_{2} \mathrm{Me}-40 \cdot 1,-37 \cdot 5$, $-35 \cdot 2$, and $-33 \cdot 2$; $\mathrm{Me}-4 \cdot 4$; and CH_{2} (meso) $-1 \cdot 4,+0 \cdot 2$, $+1 \cdot 3$, and $+3 \cdot 2$. These assignments are based upon peak areas and a comparison with the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (I) in $\mathrm{CDCl}_{3}: \mathrm{CH}_{2}-33.4$ and $-41 \cdot 6 ; \mathrm{Me}-4.8$; and meso- H , $+55 \mathrm{br} .^{2}$ The signals from (II) at $-1 \cdot 4$ and $+3 \cdot 2$ are broad ($c a .300 \mathrm{~Hz}$) and of low intensity, while the other two
meso $-\mathrm{CH}_{2}$ signals are sharp with about ten times the intensity of the broad peaks.

The splitting of the CH_{2} peaks is a result of the asymmetric nature of the square-pyramidal porphyrin complex and the distortion of the porphyrin ring by the meso-substituents. Models show that the four pyrrole rings with β-ethyl groups will undergo skeletal 'ruffling' in order to accommodate the four bulky $\mathrm{CH}_{2} \mathrm{NO}_{2}$ groups. This forces the meso $-\mathrm{CH}_{2}$ groups out of the porphyrin ring plane and either close to the out-of-plane iron or away from it, on the opposite side of the porphyrin plane. The variation in the line shapes of the meso- CH_{2} signals may be due to the nonequivalency of the groups or a difference in their rotational correlation times.
meso-Substitution of porphyrins and metalloporphyrins may be achieved by either electrophilic or free-radical attack. ${ }^{1 a}$ The path of the meso-nitromethylation reaction is not known and is now under study. Both NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are present in the solution, but $\mathrm{N}_{2} \mathrm{O}_{4}$, present in high concentration at room temperature ${ }^{3}$ is probably involved in the nitromethylation reaction. NO_{2}, since it is known to abstract hydrogen atoms from $\mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{5}$ is less likely to be involved.

We acknowledge support of the research by the Environmental Protection Agency. We also thank Dr. P. D. Ellis of the University of South Carolina for the n.m.r. spectrum.
(Received, 23rd October 1973; Com. 1461.)
${ }^{1}$ (a) R. Bonnett and M. J. Dimsdale, J.C.S. Perkin I, 1972, 2540 and other papers in this series; (b) J. B. Paine and D. Dolphin, J. Amer. Chem. Soc., 1971, 93, 4080; (c) C. E. Castro and H. F. Davis, ibid., 1969, 91, 5405.
${ }_{2}$ F. A. Walker and G. N. LaMar, Ann. New York Acad. Sci., in the press.
${ }^{3}$ P. Gray and P. Rathbone, J. Chem. Soc., 1958, 3550.
${ }^{4}$ D. V. E. George and J. H. Thomas, Trans. Faraday Soc., 1962, 58, 262.

