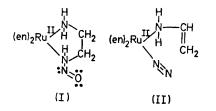
## Dinitrogen Complex Formation with the Breakage of the C–N Bond on a Co-ordinated Ethylenediamine

By STEVEN PELL and JOHN N. ARMOR\*

(Department of Chemistry, Boston University, Boston, Massachusetts 02115)


Summary Treatment of  $\operatorname{Ru}(\operatorname{en})_3^{3+}$  with NO in alkaline solution results in the ready production of a dinitrogen complex with concomitant breakage of the C-N bond of the ethylenediamine chelate ring.

IN recent reports of dinitrogen complex formation unusual coupling reactions of two remote nitrogen atoms have occured,<sup>1,2</sup> and we have discussed<sup>3,4</sup> the reaction:  $Ru(NH_3)_6^{3+}$  +  $OH^-$  +  $NO \rightarrow Ru(NH_3)_6N_2^{2+}$  +  $2H_2O$ . We now report a similar reaction for  $Ru(en)_3^{3+}$ , in which the ethylenediamine

C-N bond is broken, and which may be driven, in part, by the inherent stability of the metal-dinitrogen bond.<sup>5</sup>

Injection of a deoxygenated solution of  $\operatorname{Ru}(en)_3^{3+}$  (0.04 mmol) into 0.4M-NaOH (2 mmol) (NO-saturated, 0.02 mmol) resulted in an immediate discoloration. The mixture was purged with NO (g) 0—120 min before degassing with Ar (25 min) and then acidifying with HBr to pH < 2. Solid products could not be obtained directly from fresh solutions using Br<sup>-</sup>, I<sup>-</sup>, BF<sub>4</sub><sup>-</sup>, and PF<sub>6</sub><sup>-</sup>, but cold, saturated Na[BPh<sub>4</sub>] solution gave a solid with an i.r.

band at 2120 cm<sup>-1</sup>. Microanalysis and its u.v. and i.r. spectra were consistent<sup>1</sup> with the formula:  $[Ru(en)_{2}(N_{2}) OH_2$  [BPh<sub>4</sub>]<sub>2</sub>.



The distribution of products of this reaction can be obtained upon roto-evaporation of the product solution (containing only Br- anions) to dryness. If the reaction is performed at 2 °C, only one i.r. band is observed above 1800 cm<sup>-1</sup>, at 2113 cm<sup>-1</sup>. At room temperature, two new bands of similar intensity are observed at 2113 and 1905 cm<sup>-1</sup>. At lower pH values or longer times of contact of  $\operatorname{Ru}(en)_3^{3+}$  with the alkaline solution, the 2113 cm<sup>-1</sup> band decreases in intensity, while the  $1905 \text{ cm}^{-1}$  band increases. A band at 1638 cm<sup>-1</sup> was always associated with the 2113 cm<sup>-1</sup> band in fresh preparations. N-H bands in Ru-ethylenediamine complexes are well removed from this position,<sup>6-8</sup> and deuteriation studies confirmed that this band was not due to OH or NH. In the absence of NO, the bands at 2113 and  $1905 \text{ cm}^{-1}$  are not observed.

 $\mathrm{Ru}(\mathrm{en})_3{}^{3+}$  reacts with NO in acidic media (pH  $\leqslant$  2) to yield a nitrosyl complex<sup>9</sup> with v(NO) at 1905 cm<sup>-1</sup>. Since the 2100 cm<sup>-1</sup> region is characteristic of metal-dinitrogen complexes, it appears that the reaction proceeds under conditions analogous to those in the competition between substitution and diazotization by NO upon Ru(NH<sub>3</sub>)<sub>6</sub><sup>3+,3,4</sup> A diazonium salt structure with a free diazo-linkage might also produce a band in the  $2100 \text{ cm}^{-1}$  region.<sup>10</sup> but such a structure would be reactive. The following facts also indicate that we have prepared a dinitrogen complex. i, Use of <sup>15</sup>NO gives a band at 2067 cm<sup>-1</sup>, as expected for a N<sub>2</sub> complex derived from attack of NO upon the amine;<sup>10</sup> ii, cerium (IV) sulphate and the tetraphenylborate salt produces 1 ( $\pm 10\%$ ) mol of N<sub>2</sub>, per mol Ru; iii, ion exchange gives a species of charge +2, stable in aqueous solution, with  $\lambda_{max}$  221 nm, characteristic of Ru<sup>II</sup>-N<sub>2</sub> complexes.

The 1638 cm<sup>-1</sup> band may be assigned<sup>10</sup> to  $\nu(C=C)$ , and compounds (I) and (II) may be intermediates in the reactions. Vinylamine is unstable, and neither it nor acetaldehyde, the expected decomposition product, were detected. The expected product of such a reaction would be the observed  $[Ru(en)_2(N_2)(H_2O)]^{2+}$ .

From the 221 nm u.v. band,<sup>12</sup> we estimated the yield of the N<sub>2</sub> complex to be ca. 40%. A >60% yield of [Ru(en)<sub>2</sub>- $(N_2)OH_2$  [BPh<sub>4</sub>]<sub>2</sub> can be achieved by the controlled addition of aliquot portions of Ru(en)3<sup>3+</sup> (at pH 3) into a large excess of alkaline, NO-saturated solutions (at pH 13).

This remarkable reaction of  $\operatorname{Ru}(en)_{3}^{3+}$  finds some parallel with the air oxidation of  $Ru(en)_3^{3+}$  in alkaline solution to yield an  $\alpha$ -di-imine chelate ring.<sup>13,14</sup> The NO similarly oxidises the ethylenediamine ligand, ultimately resulting in a reduction of the metal centre.

We thank the National Science Foundation for financial support.

(Received, 8th October 1973; Com. 1386.)

- <sup>1</sup>L. Kane-Maguire, G. Sheridan, F. Basolo, and A. G. Pearson, J. Amer. Chem. Soc., 1968, 90, 5295.
- <sup>2</sup> H. Scheidegger, J. N. Armor, and H. Taube, J. Amer. Chem. Soc., 1968, 2363.
   <sup>3</sup> S. Pell and J. Armor, J. Amer. Chem. Soc., 1972, 94, 686.
   <sup>4</sup> S. Pell and J. Armor, J. Amer. Chem. Soc., 1973, 7625.
   <sup>5</sup> J. Armor and H. Taube, J. Amer. Chem. Soc., 1970, 92, 6170.
   <sup>6</sup> J. Broomhead and L. Kane-Maguire, Inorg. Chem., 1969, 8, 2124.
   <sup>6</sup> A. Dellon and C. K. Sapeff. Chem. d. Chem. 1965, 43, 898.

- <sup>9</sup> A. D. Allen and C. V. Senoff, Canad. J. Chem., 1965, 43, 888.
  <sup>8</sup> J. Broomhead and L. Kane-Maguire, J. Chem. Soc. (A), 1967, 546.
  <sup>9</sup> S. Pell and J. Armor, to be published.
  <sup>10</sup> L. J. Bellamy, 'The Infra-Red Spectra of Complex Molecules,' Wiley, New York, 1962, pp. 34—36, 273.
  <sup>11</sup> S. D. L. A. Marc, H. Truba and J. Armor, Chem. 1974, 479.
- <sup>11</sup> S. Pell, A. Mann, H. Taube, and J. Armor, Inorg. Chem., 1974, 479.
- <sup>12</sup> L. Kane-Maguire, J. Inorg. Nuclear Chem., 1971, 33, 3964.
   <sup>13</sup> B. C. Lane, J. Lester, and F. Basolo, Chem. Comm., 1971, 1618.
- <sup>14</sup> Sr. H. Elsbernd and J. K. Beattie, J. Chem. Soc., (A), 1970, 2598.