Hydrogen-Deuterium Exchange between $LiBH_4$ and $LiBD_4$. Isotope Effects on the 'H and ''B Nuclear Magnetic Resonance Spectra of Species $LiBH_nD_{4-n}$

By BRUCE D. JAMES* and BRIAN E. SMITH

(Department of Chemistry, University of Queensland, St. Lucia, Queensland 4067, Australia)

and Roger H. NEWMAN

(D.S.I.R. Chemistry Division, Petone, New Zealand)

Summary Isotope effects on the ¹¹B-H coupling constant and on the ¹H and ¹¹B chemical shifts are observed in the n.m.r. spectra of the mixture of species, $\text{LiBH}_n\text{D}_{4-n}$ (n = 0-4), produced by H-D exchange between LiBH_4 and LiBD_4 .

THE addition of tetrahydrofuran to a mixture of LiBH₄ and LiBD₄ (H: D = 2:1) yielded a solution (ca. 3·5m in boron) which exhibits the ¹¹B (15·09 MHz) and ¹H (100 MHz) n.m.r. spectra shown in Figures 1 and 2. Clearly these are not the spectra of the initial components, but rather the superposition of spectra due to a mixture of species: BH₄⁻, BH₃D⁻, BH₂D₂⁻, BHD₃⁻, and BD₄⁻ resulting from H–D exchange. In the above solution, the first three of these species predominate.

Analysis of the ¹¹B spectrum is given in Figure 1, where the larger splitting is due to $J(^{11}B-H)$ (81.5 Hz for LiBH₄) and the smaller to $J(^{11}B-D)$ (12.5 Hz for LiBH₃D). The centres of the resonances of LiBH_nD_{4-n} are seen to occur at successively higher field as *n* decreases from 4 to 2. In fact, resonances for LiBH₃D and LiBH₂D₂ occur ca. 0.13 and 0.27 p.p.m. respectively upfield from LiBH₄.

The ¹H n.m.r. of the solution is affected by the natura occurrence of two isotopes of boron: ¹¹B (80.2%, $I = \frac{3}{2}$,

FIGURE 1. ¹¹B n.m.r. spectrum of the mixture of species $LiBH_nD_{4-n}$. $a = LiBH_4$, $b = LiBH_3D$, $c = LiBH_2D_2$.

and at least portions of the spectra of BH_4^- (singlet), BH_3D^- (1:1:1 triplet) and $BH_2D_2^-$ (1:2:3:2:1 quintet)

can be observed. The centres of the ¹H resonances of the species $\text{LiBH}_n D_{4-n}$ occur to higher field as *n* decreases from

FIGURE 2. ¹H n.m.r. spectrum of the mixture of species Li¹¹BH_nD_{4-n}. showing individual components of the quartet. Only the ¹¹B quartet is shown here; the ¹⁰B septet is omitted. Each member of the quartet A—D was run under slightly different conditions. Adjacent members of the quartet are separated by $J(^{11}B-H)$ (ca. 81 Hz).

4 to 2. Such a trend is consistent with the majority of previously recorded deuterium isotope effects on ${}^{1}H$ chemical

¹ H. Batiz-Hernandez and R. A. Bernheim, Progr. N.M.R. Spectroscopy, 1967, 3, 63.

- ² R. E. Mesmer and W. L. Jolly, J. Amer. Chem. Soc., 1962, 84, 2039.
- ⁸ M. Murray, J. Magnetic Resonance, 1973, 9, 326, and references therein.

shifts.¹ It is also clear from Figure 2 that the four members of the quartet are not identical. The change in the relative positions of the component multiplets corresponds to a decrease in the absolute value of $J^{(11}B-H)$ as *n* decreases in LiBH_nD_{4-n}. The congestion of the multiplets and the resulting overlap limits the accuracy with which the above effects can be measured. Nevertheless it is estimated that the LiBH₃D resonance occurs *ca*. 0.011 p.p.m. upfield of LiBH₄ and $|J^{(11}B-H)|$ in LiBH₃D is *ca*. 0.4 Hz less than that in LiBH₄. Isotope shifts in the ¹H n.m.r. of an aqueous solution of partially deuteriated potassium hydroborates have been reported previously.² The authors, however, reported that (unlike the present result) the four members of the quartet were equivalent.

We believe the present work contains the first observation of an isotope shift in a ¹¹B n.m.r. spectrum and is the first report of a secondary isotope effect on a coupling constant $J(^{11}B-H)$, thus adding to the limited data regarding isotope effects on coupling constants at present available in the literature.³

We acknowledge the assistance of Mr. R. M. Peachey. This work is supported by the Australian Research Grants Committee.

(Received, 14th January 1974; Com. 036.)