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Relationship Between the Photoelectron Spectra and Torsional Barriers 
of Aminophosphines 

By ALAN H. COWLEY,* MICHAEL J. S. DEWAR,* JOHN W. GILJE,~  D. WAYNE GOODMAN, and JERALD R. SCHWEIGER 
(Department of Chemistry, University of Texas at Austin, Austin, Texas 78712) 

Sumnary The trends in the nitrogen and phosphorus 
lone-pair ionization potentials of Me,NP(CF,), (1) , 
Me,NP(CI)CF,, (2), and Me,NPCl, (3) suggest that the 
P-N torsional barriers in aminophosphines arise pre- 
dominantly from steric and lone pair-lone pair repulsion 
effects. 

THE origins of the P-N torsional barriers in aminophos- 
phines are not well There is clear evidence 
for the operation of steric effects1 and the importance of 
lone pair-lone pair repulsions seems to be indicated by the 

fact that H,NPF23 and Me,NPF,4 adopt gauche ground- 
state geometries. Differential (i .e.  axially unsymmetrical) 
nitrogen-phosphorus ( p  + d ) n  bonding has also been 
suggested1 as a barrier contributor to explain the observa- 
tion that unsymmetrical aminophosphines of the type 
R,NPXY possess P-N torsional barriers which are 25-30% 
higher than those of the corresponding symmetrical species 
R,NPX2 and R,NPY,. This suggestion is also consistent 
with e.g. the trigonal planar nitrogen geometries of H2NPFz 
and Me,NPF,; however; ab initio M.O. calculationss on 
H,NPH, imply that the planarity a t  nitrogen is due to 
inductive rather than conjugative effects. 

t On leave from the Uuiversity of Hawaii, Honolulu, Hawaii, during 1972-1973. 
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We have now measured the He(1) photoelectron spectra 
(p.e.s.) of Me,NP(CF,), (l), Me2NP(C1)CF3 (2), and Me2- 
NPCl, (3) in order to investigate the importance of lone- 
pair effects. The Table lists the nitrogen and phosphorus 
lone-pair ionization potentials (1.P.s). Note that the 
nitrogen lone-pair 1.P.s of (1)-(3) are essentially constant. 
This is consistent with a gauche ground state geometry for 
(1)-(3), i .e. an angle of cu. 90” between the nitrogen and 
phosphorus lone pairs since changes in the phosphorus 
lone-pair energies have no significant effect on the nitrogen 

(2) > (1). By contrast the order of steric effects is 
(1) > (2) > (3). The observed sequence of P-N torsional 
barriers (2) > (1) (3) could clearly result from the 
combination of lone pair-lone pair repulsion and steric 
effects of approximately equal magnitude . 

Another significant feature of the p.e.s. data is the fact 
that the phosphorus lone pair is destabilized by sub- 
stitution of a CF, by a C1 group. This is presumably due 
to interaction between the phosphorus and chlorine lone 
pairs since the sigma inductive parameters of the CF, and 

TABLE. P.e.s. ionization potential dataa 

Nitrogen 
Compound lone-pair I.P. 

.. .. .. 9.56 
.. .. 9-56 

MezNP(CF3)z (1) 

Me,NPCl, (3) . . .. .. .. 9.45 
(CF,),P (4) * * 

CF,PCl, (6) . . .. .. .. 

Me,NP(Cl)CF, (2) . . 

(CF,),PCl (5) . . 

a Vertical ionization potentials in electron volts. 

- .. .. .. 
- * .  .. .. - 

b See ref. 1. 

lone-pair energies. Although the nitrogen lone-pair I. P. 
for (2) is very slightly larger than that of (3) the p.e.s. data 
provide little support for nitrogen-phosphorus (9 +d)v 
bonding in the ground state since the nitrogen lone-pair I.P. 
for (2) is equal to that of (1). 

Assuming gauche ground-state geometries for (1)-(3) the 
differences in the phosphorus and nitrogen lone-pair I.P.s, 
I.P.,-I.P.N, are important in assessing the magnitude of the 
lone pair-lone pair interaction in the transition state since 
this interaction should vary as the inverse of 1.P.p-1.P.N.S 
On this basis the order of lone pair-lone pair repulsions is (3) 

Phosphorus I .P. p-I .P. N P-N Torsional 
Lone-pair I.P. barrierb t c 

10.57 
10.11 
9-96 

11.70 
11-13 
10.70 

1.01 
0-55 
0.51 - 
- 
- 

c In  kcal/mole. 

C1 groups are very similar.’j Note also that additional C1 
substitution produces a “saturation effect’’ i . e .  successive 
replacement of CF, by C1 results in progressively less 
change in the phosphorus lone-pair I.P. This effect is also 
observed in the monophosphines (CF,),P, (CF,),PCl, and 
CF3PCl,. 
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2 According to perturbation theory the splitting, SE, between two interacting energy levels, El and E,, is given by 1SE I = p 2 ~ p / A E  
See, for where AE =El - E, (El 5 E,) and / 3 ~ ~  is a measure of the interaction between the nitrogen and phosphorus lone pairs. 
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