Relationship Between the Photoelectron Spectra and Torsional Barriers of Aminophosphines

By Alan H. Cowley,* Michael J. S. Dewar,* John W. Gilje,† D. WAYNE GOODMAN, and JERALD R. Schweiger (Department of Chemistry, University of Texas at Austin, Austin, Texas 78712)

Summary The trends in the nitrogen and phosphorus lone-pair ionization potentials of $Me_2NP(CF_3)_2$ (1), $Me_2NP(Cl)CF_3$, (2), and Me_2NPCl_2 (3) suggest that the P-N torsional barriers in aminophosphines arise predominantly from steric and lone pair-lone pair repulsion effects.

THE origins of the P-N torsional barriers in aminophosphines are not well understood.^{1,2} There is clear evidence for the operation of steric effects¹ and the importance of lone pair-lone pair repulsions seems to be indicated by the

fact that $H_2NPF_2^3$ and $Me_2NPF_2^4$ adopt gauche groundstate geometries. Differential (*i.e.* axially unsymmetrical) nitrogen-phosphorus $(p \rightarrow d)\pi$ bonding has also been suggested¹ as a barrier contributor to explain the observation that unsymmetrical aminophosphines of the type R_2NPXY possess P-N torsional barriers which are 25—30% higher than those of the corresponding symmetrical species R_2NPX_2 and R_2NPY_2 . This suggestion is also consistent with *e.g.* the trigonal planar nitrogen geometries of H_2NPF_2 and Me_2NPF_2 ; however; *ab initio* M.O. calculations⁵ on H_2NPH_2 imply that the planarity at nitrogen is due to inductive rather than conjugative effects.

[†] On leave from the University of Hawaii, Honolulu, Hawaii, during 1972-1973.

We have now measured the He(I) photoelectron spectra (p.e.s.) of $Me_2NP(CF_3)_2$ (1), $Me_2NP(Cl)CF_3$ (2), and Me_2 -NPCl₂ (3) in order to investigate the importance of lonepair effects. The Table lists the nitrogen and phosphorus lone-pair ionization potentials (I.P.s). Note that the nitrogen lone-pair I.P.s of (1)-(3) are essentially constant. This is consistent with a gauche ground state geometry for (1)---(3), *i.e.* an angle of ca. 90° between the nitrogen and phosphorus lone pairs since changes in the phosphorus lone-pair energies have no significant effect on the nitrogen

 \cong (2) > (1). By contrast the order of steric effects is (1) > (2) > (3). The observed sequence of P-N torsional barriers $(2) > (1) \simeq (3)$ could clearly result from the combination of lone pair-lone pair repulsion and steric effects of approximately equal magnitude.

Another significant feature of the p.e.s. data is the fact that the phosphorus lone pair is destabilized by substitution of a CF_3 by a Cl group. This is presumably due to interaction between the phosphorus and chlorine lone pairs since the sigma inductive parameters of the CF_3 and

TABLE. P.e.s. ionization potential data^a

Compound						Nitrogen lone-pair I.P.	Phosphorus Lone-pair I.P.	$I.P{P}-I.P{N}$	P–N Torsional barrier ^{b,c}
Me,NP	(CF.). (1)	••	••		9.56	10.57	1.01	8.7
Me, NP	(CI)ČF,	(2)		••	••	9.56	10.11	0.55	10.5
Me.NP	Čl, (3)	·		••		9.45	9.96	0.51	8.4
(CF.),F	°(4)	••		••	••		11.70	<u> </u>	
(CF.),F	PCl (5)		••	••	• •		11.13		
ĊF _s PCl	. ₂ (6)	• •		••			10.70		

^a Vertical ionization potentials in electron volts. ^b See ref. 1. ^c In kcal/mole.

lone-pair energies. Although the nitrogen lone-pair I.P. for (2) is very slightly larger than that of (3) the p.e.s. data provide little support for nitrogen-phosphorus $(p \rightarrow d)\pi$ bonding in the ground state since the nitrogen lone-pair I.P. for (2) is equal to that of (1).

Assuming gauche ground-state geometries for (1)—(3) the differences in the phosphorus and nitrogen lone-pair I.P.s, $I.P._{P}-I.P._{N}$, are important in assessing the magnitude of the lone pair-lone pair interaction in the transition state since this interaction should vary as the inverse of $I.P._{P}-I.P._{N}$. On this basis the order of lone pair-lone pair repulsions is (3)

Cl groups are very similar.⁶ Note also that additional Cl substitution produces a "saturation effect" i.e. successive replacement of CF₃ by Cl results in progressively less change in the phosphorus lone-pair I.P. This effect is also observed in the monophosphines (CF3)3P, (CF3)2PCl, and CF₃PCl₂.

We thank the National Science Foundation, the U.S. Air Force Office of Scientific Research, and the Robert A. Welch Foundation for financial support.

(Received, 20th December 1973; Com. 1714.)

 \downarrow According to perturbation theory the splitting, δE , between two interacting energy levels, E_1 and E_2 , is given by $|\delta E| = \beta^2_{NP}/\Delta E$ where $\Delta E = E_1 - E_2$ ($E_1 < E_2$) and β_{NP} is a measure of the interaction between the nitrogen and phosphorus lone pairs. See, for example, M. J. S. Dewar, 'Hyperconjugation,' Ronald Press, New York, 1962.

¹ A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, J. Amer. Chem. Soc., 1970, 92, 5206. ² H. Goldwhite and D. G. Rowsell, Chem. Comm., 1969, 713.

⁸ A. H. Brittain, J. E. Smith, P. L. Lee, K. Cohn, and R. H. Schwendeman, J. Amer. Chem. Soc., 1971, 93, 6772.

* E. D. Morris and C. E. Nordman, Inorg. Chem., 1969, 8, 1672; P. Forti, D. Damiani, and P. G. Favero, J. Amer. Chem. Soc., 1973, 95, 756. ⁵ I. G. Csizmadia, A. H. Cowley, M. W. Taylor, L. M. Tel, and S. Wolfe, J.C.S. Chem. Comm., 1972, 1147.

⁶ J. E. Huheey, J. Phys. Chem., 1965, 69, 3284.