Nuclear Magnetic Resonance and Structural Studies of Rhodium-Diarylcarbene Complexes

By Takakazu Yamamoto, Albert R. Garber, John R. Wilkinson, Charles B. Boss, William E. Streib, and Lee J. Todd*
(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary ${ }^{13} \mathrm{C}$ N.m.r. and single-crystal X-ray studies of Recently the syntheses of some novel rhodium diphenyl$\left[\mathrm{Rh}\left(\mathrm{CPh}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2} \mathrm{CO}, \quad\left[\mathrm{Rh}\left(\mathrm{CPh}_{2}\right)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2} \mathrm{CO}$, and $\left[\mathrm{Rh}\left(\mathrm{CPh}_{2}\right)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}$ indicate that the CPh_{2} groups occupy bridging positions in these three molecules.
carbene complexes using diphenyldiazomethane or diphenylketen as the carbene source were reported. ${ }^{1} \mathrm{Re}-$ action of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ with diphenyldiazomethane produced
$\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{CPh}_{2}\right) \mathrm{Cl}_{n}\right.$ (I) which seems to be polymeric because of its insolubility in most solvents. Treatment of (I) with pyridine formed $\left[\mathrm{Rh}\left(\mathrm{CPh}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2} \mathrm{CO}$ (II) \dagger and reaction of (I) with $\mathrm{NaC}_{5} \mathrm{H}_{5}$ gave $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mathrm{CPh}_{2}\right)_{2} \mathrm{CO}$ (III). Heating complex (III) in solution caused loss of CO and formation of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mathrm{CPh}_{2}\right)_{2}$ (IV). We report here the unusual structures of (II), (III), and (IV) based on single-crystal X-ray and ${ }^{13} \mathrm{C}$ n.m.r. studies of these molecules

Table. ${ }^{13} \mathrm{C}$ N.m.r. data of the rhodium carbene complexes

Compound	Chemical shift	$J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right)$	Assignment
(II)	206.5	47.3(t)	
	185.2	18.1(t)	Carbene-C
(III)	223.4	42.4(t)	
	156.0	23.3(t)	Carbene-C
	130.7, 129.6, 128.1,		
	$\begin{aligned} & 126 \cdot 7,126 \cdot 0,125 \cdot 0 \\ & 123 \cdot 9 \end{aligned}$		
(IV)	188.2	$42 \cdot 7(t)$	Carbene-C
	131.3, 128.1, 126.2,		Ph
	124.6		
${ }^{\text {a }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent, p.p.m. from $\mathrm{Me}_{4} \mathrm{Si}=0$.			

The ${ }^{12} \mathrm{C}$ n.m.r. spectra of (II), (III), and (IV) containing natural abundance ${ }^{13} \mathrm{C}$, in the presence of $0.03 \mathrm{M} \mathrm{Cr}(\mathrm{acac})_{3}$, showed no signals attributable to the carbonyl or carbene carbon atoms. However, use of $20 \%{ }^{13} \mathrm{C}$-enriched $\mathrm{Ph}_{2}-$ ${ }^{13} \mathrm{CN}_{2}$ in the preparation of compounds (II), (III), and (IV)

Figure. An ORTEP drawing of $\left[\mathrm{Rh}_{(}\left(\mathrm{CPh}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2} \mathrm{CO}$. Only the nitrogen atoms of the pyridine rings are included for clarity.
as described above allowed observation and assignment of the carbene carbon resonances, and use of $60 \%{ }^{13} \mathrm{C}$-enriched $\left[\mathrm{Rh}\left({ }^{13} \mathrm{CO}\right)_{2} \mathrm{Cl}\right]_{2}$ allowed observation and assignment of the carbonyl carbon resonances (see Table). Both the carbonyl and carbene resonances of (II) appear as sharp triplets at room temperature and at -85°, suggesting that the two carbene ligands and the carbonyl group are in bridging positions between the two rhodium atoms. Furthermore the chemical shift and $J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right)$ values for the carbonyl carbon of (II) are similar to the values obtained for the bridging carbonyl groups of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{3}{ }^{2}$ and $\mathrm{Rh}_{4}(\mathrm{CO})_{12} .{ }^{3}$ These ${ }^{13} \mathrm{C}$ n.m.r. values are distinctively different from those of terminal carbonyl groups. Since these data lead to an unusual structure for (II), we have undertaken a single-crystal X-ray study to confirm our results. Preliminary results indicate that the material crystallizes in the monoclinic space group C2 ($C_{\frac{3}{2}}^{3}$) with $a=19 \cdot 14(1), b=10 \cdot 05(1), c=11 \cdot 41(1) \AA, \beta=121 \cdot 17(3)^{\circ}$, $U=1912(2) \AA^{3}$. The calculated density for two [Rh$\left.\left(\mathrm{CPh}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2} \mathrm{CO}, 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ units per unit cell was in agreement with the observation that the solid would sink in CCl_{4} and float in EtI although we were unable to obtain an accurate observed density because of the high solubility of the solid. Selection of the non-unique space group $C 2$ was made by the Patterson method and subsequent successful structure refinement. At the present stage of least-squares refinement based on 1831 reflections, the residual, R, is 0.07 . The structure is given in the Figure. The molecule contains two-fold symmetry such that the carbonyl group lies on a crystallographic two-fold axis.

The $\mathrm{Rh}-\mathrm{Rh}$ distance of $2.51 \AA$ is comparable to the value of $2 \cdot 63,2 \cdot 66$, and $2 \cdot 69 \AA$ found in $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Rh}(\mathrm{CO})\right]_{2}, 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Rh}_{3}(\mathrm{CO})_{3},{ }^{5}$ and Rh metal ${ }^{6}$ respectively and indicates the existence of a rhodium-rhodium bond. The atom arrangement about the bridging carbene carbon is very similar to that found in 1,1-diphenylcyclopropane derivatives. ${ }^{7}$

The carbene and carbonyl resonances of compound (III) also appear as sharp triplets at room temperature and -90°. The carbonyl chemical shift and $J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right)$ values are those expected for a bridging carbonyl. Thus we propose that (III) has a triple bridging structure analogous to (II). ${ }^{8}$ The ${ }^{13} \mathrm{C}$ n.m.r. signal for the carbene carbons of (IV) is a triplet suggesting that these two ligands are also in bridging
\dagger Compound (II) was previously formulated as $\left[\mathrm{Rh}\left(\mathrm{CPh}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{CO}\right]_{2}$ (see ref. 1). Our single-crystal X-ray results (vide infra) clearly show that this formula is incorrect.
positions. The appearance of seven resonances in the phenyl region of the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of (III) indicates that the two phenyl groups attached to the carbene carbon are not equivalent in this complex. However for (IV) only four resonances for the phenyl groups were observed suggesting increased symmetry for this complex. Based on this
information, we propose the following structure for (IV) in solution. ${ }^{8}$

This research was supported by the National Science Foundation.
(Received, 11th December 1973; Com. 1678.)
${ }^{1}$ P. Hong, N. Nishii, K. Sonogashira, and N. Hagihara, J.C.S. Chem. Comm., 1972, 993.
${ }^{2}$ J. Evans, B. F. G. Johnson, J. Lewis, and J. R. Norton, J.C.S. Chem. Comm., 1973, 79.
${ }^{3}$ F. A. Cotton, L. Kruczynski, B. L. Shapiro, and L. F. Johnson, J. Amer. Chem. Soc., 1972, 94, 6191.
${ }^{4}$ P. Singh, C. B. Dammann, and D. J. Hodgson, Inorg. Chem., 1973, 12, 1335.
${ }^{5}$ E. F. Paulus, Acta Cryst., 1968, B25, 2206.
${ }^{6}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York.
${ }^{7}$ F. R. Ahmed and E. J. Gabe, Acta Cryst., 1964, 17, 603.
${ }^{8}$ The structures of compounds (III) and (IV) have recently been determined by single-crystal X-ray methods and are in agreement with our ${ }^{13} \mathrm{C}$ n.m.r. results: H. Ueda, Y. Kai, N. Yasuoka, and N. Kasai, Abstracts 21 st Symposium on Organometallic Chemistry, Sendai, Japan, October 1973 (No. 214).

