Journal of

The Chemical Society,

Chemical Communications

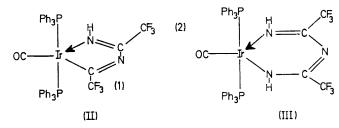
NUMBER 10/1974

22 MAY

Reaction of Trifluoroacetonitrile with π -Allylic-iridium Complexes; the Crystal Structure of an Iridium(1) Six-membered Ring Chelate Complex

By MICHAEL GREEN* and SUSAN H. TAYLOR

(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)


and JOHN J. DALY* and FRANCISCO SANZ

(Monsanto Research S.A., Eggbühlstrasse 36, CH 8050, Zurich)

Summary $[Ir(\pi-2-Me-C_3H_4)(CO)(PPh_3)_2]$ reacts with CF_3 -CN to afford an iridium(1) six-membered chelate complex, identified by X-ray crystallography; whereas, with $[Ir(\pi-1-MeC_3H_4)(CO)(PPh_3)_2]C_4H_6$ is displaced and a fivemembered ring system is formed from two CF_3CN molecules joined head to tail.

THE reaction of charged¹ and uncharged electrophiles² with unsaturated organic molecules, which are co-ordinated to low-valent transition metal species, is a subject of current interest. Although the conversion on protonation of a co-ordinated π -allyl ligand into an olefin is well known, the related reactions with unchanged electrophiles have received little attention. In investigating the reaction of trifluoroacetonitrile with π -allylic iridium(I) complexes, we have discovered two unusual insertion reactions.

Treatment of a solution of carbonyl-(π -2-methylallyl)bis-(triphenylphosphine)iridium³ in benzene with an excess of trifluoroacetonitrile resulted in the formation (room temperature; 2 days) of the complex (I) [orange crystals, m.p. 195—197°, v_{co}(Nujol) 1973 cm⁻¹; ¹H n.m.r. resonances (CDCl₃) at $\tau - 0.27$ br (s, 1H, NH), 2·12 br (s, 1H, NH), 2·4 (m, 5H, Ph), 4·66 (s, 1H, C=CH₂), 5·07 (s, 1H, C=CH₂), and 8·12 (s, 3H, Me); ¹⁹F resonances (CH₂Cl₂) at 63·9 p.p.m. (s, 3F, CF₃) and 69·3 (s, 3F, CF₃)] characterised as a 1:2 adduct by elemental analysis and mass spectroscopy. The absence of absorption in the i.r. spectrum attributable to v_{CN} discounted the possibility of co-ordinated (CF₃C = N \rightarrow Ir) trifluoroacetonitrile; moreover, the n.m.r. data suggested the possibility that (I) had an unusual chelate structure.

An X-ray crystallographic study was therefore undertaken, establishing the illustrated structure (Figure). Crystal data: $C_{27}H_{22}F_6IrN_2OP$, $M = 727\cdot7$, orange monoclinic crystals, space group $P2_1/c$, $a = 15\cdot615(9)$, b = 10418-(6), $c = 17\cdot816(11)$ Å, $\beta = 113\cdot68(5)^{\circ}$, $U = 2654\cdot3$ Å³, $D_m = 1805$, Z = 4, $D_c = 1812$ kg m⁻³; Mo- K_{α} radiation, $\lambda = 0.71069$ Å, μ (Mo- K_{α}) = 548 m⁻¹. Monochromated data for 3277 planes were measured on a linear diffractometer, corrected for absorption, and refined to an R of 0.045.

The central iridium atom exhibits square-planar coordination with Ir-P = 2.271(3), Ir-Cl(1) = 1.831(13), Ir-N(1) = 2.028(10), and Ir-N(2) = 2.023(9) Å. All atoms, except fluorine, hydrogen, C(26), C(27), and the carbons of the phenyl groups lie close to the co-ordination plane. Bonds of the same type in the heterocyclic ring have the same lengths, within the error limits of the analysis, N-C =1.321(16), C-C = 1.410(17)Å. The CH₃-C=CH₂ group is inclined at nearly 90° to the plane of the heterocyclic ring, presumably because of repulsions from the bulky CF₃ groups.

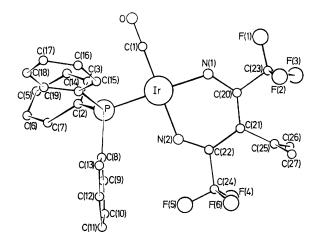


FIGURE. Structure of complex (I)

Thus, in this unusual reaction two CF₃CN groups have each become bonded to the same terminal carbon atom of the original π -2-methylallyl ligand, displacing it from the iridium, while themselves becoming co-ordinated to the metal through their nitrogen atoms, forming a six-membered chelate ring.

In contrast, reaction of carbonyl- $(\pi$ -1-methylallyl)bis(triphenylphosphine)iridium with trifluoroacetonitrile afforded

orange crystals of (II) [m.p. 241-243°, vco(hexane) 1990, $v_{CN}(Nujol)$ 1500 cm⁻¹; ¹H resonances (CDCl₃) at τ 2.5 br (s, 1H, NH) and 2.9 (m, 5H, Ph); ¹⁹F resonances (CH₂Cl₂) at 62.8 p.p.m. [t, 3F, $CF_3(1)$, J_{PF} 14.0 Hz] and 67.7 [t, $CF_3(2)$, J_{PF} 8.5 Hz], where the couplings were established by 19F {⁸¹P} decoupling experiments]. Elemental analysis and mass spectroscopy confirmed that the reaction involved loss of C_4H_6 , a process which can be understood in terms of the reverse of the addition of Ir-H to buta-1,3-diene.³ These observations suggested the structure shown for (II), in which head-to-tail dimerisation of CF₃CN affords a fivemembered chelate ring, the transfer of hydrogen from iridium to nitrogen completing the reaction.

The corresponding reaction of carbonyl- $(\pi$ -allyl)bis(triphenylphosphine)iridium with CF₃CN affords an analogue of (I) together with a variable low yield of a yellow crystalline complex (III) (m.p. 164-165°), which on the basis of analytical and spectroscopic evidence is formulated as shown, and is clearly related to the product of the reaction of CF₃CN with [Pt(PPh₃)₄].⁴

The formation in (I) and (II) of chelate ring systems has also led us to reconsider the identity of the product of the reaction of CF_3CN with $[FeMe(CO)_2(\pi-C_5H_5)]$, formulated by King and Pannell as $[Fe\{C(CF_3)=NH\}(CF_3CN)(\pi-C_5H_5)].^5$ A preliminary crystal structure determination, shows that in fact this species contains the five-membered chelate structure present in (II).

Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

(Received, 27th February 1974; Com. 246.)

¹ B. F. G. Johnson, J. Lewis, P. McArdle, and G. L. P. Randall, J.C.S. Dalton, 1972, 456, and references quoted therein; B. F. G. Johnson, J. Lewis, and D. J. Yarrow, ibid., p. 2084.

² S. E. Jacobson, P. Reich-Rohrivig, and A. Wojcicki, *Inorg. Chem.*, 1973, 12, 717; W. P. Giering and M. Rosenblum, *J. Amer. Chem. Soc.*, 1971, 93, 5299; M. Green, S. Heathcock, and D. C. Wood, *J.C.S. Dalton*, 1973, 1564.
³ C. K. Brown, W. Mowat, G. Yagupsky, and G. Wilkinson, *J. Chem. Soc.* (A), 1971, 850.
⁴ W. J. Bland, R. D. W. Kemmitt, I. W. Nowell, and D. R. Russell, *Chem. Comm.*, 1968, 1065; W. J. Bland, R. D. W. Kemmitt, and R. D. Moore, *J.C.S. Dalton*, 1973, 1292.
⁵ R. B. King and K. H. Borned, L. Amer, *Chem. Soc.* (20, 2004).

⁵ R. B. King and K. H. Pannell, J. Amer. Chem. Soc., 1968, 90, 3984.