Alkylation of the Sodium Enolate of Ethyl Acetoacetate in Dimethoxyethane. Leaving Groups Effect on Rate and Orientation

By Pierre Sarthou, François Guibé, and Georges Bram*

(Laboratoire de Chimie Organique Biologique, \dagger Université de Paris-Sud, Centre d'Orsay, bât. 420, 91405 Orsay, France)

Summary There is no evident relationship between rate and the ratio of C - to O-alkylation products in the reaction of the sodium enolate of ethyl acetoacetate with $\mathrm{EtI}, \mathrm{EtBr}, \mathrm{TsOEt}, \mathrm{FSO}_{3} \mathrm{Et}$, and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Et}$ in dimethoxyethane.

The effect of the leaving group of the electrophile in alkylation reactions of ambident nucleophiles, such as enolate anions, is well known. ${ }^{1}$ Several explanations have been proposed; some involve 'hardness' or 'softness' of the
leaving group (HSAB theory), ${ }^{2}$ and others exothermicity of the reaction ${ }^{3}$ or electrophilicity of the alkylating agent. ${ }^{4}$

We have studied the kinetics and sites of alkylation of ethyl acetoacetate sodium enolate by a series of ethylating electrophiles, EtX, of very different reactivities, e.g. ethyl fluorosulphonate ('magic ethyl') and ethyl trifluoromethanesulphonate ('ethyl triflate') which are known to be very reactive. ${ }^{5,8}$

Table						
	I^{-}	Br^{-}	TsO-	EtSO-	FSO-	$\mathrm{CF}_{3} \mathrm{SO}^{-}$
C/O	>100	60	$6 \cdot 6$	$4 \cdot 8$	3.53	3.73
$10^{5} \times k_{\text {ons }}{ }^{\text {a }}$	500	8	$1 \cdot 3$	40	6.1×10^{5}	17.8×10^{5}
$10^{5} \times k^{\text {c }}{ }^{\text {a }}$	500	$7 \cdot 9$	$1 \cdot 1$	33	4.8×10^{5}	14×10^{5}
$10^{5} \times k_{0}$	<5	$0 \cdot 1$	0.2	7	1.3×10^{5}	3.8×10^{5}

The results \ddagger (Table) show no evident relationship between rate and orientation of the reaction: for ratio of C - to O attack, $k_{\mathrm{C}} / k_{\mathrm{o}}$, the sequence is: $\mathrm{I}^{-}>\mathrm{Br}^{-} \gg \mathrm{TsO}^{-}>$ $\mathrm{EtSO}_{4}^{-}>\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}=c a$. FSO_{3}^{-}, but for the overall rate
\dagger Equipe de Recherche Associée au C.N.R.S. $n^{\circ} 318$.
\ddagger In the case of fluorosulphonate and triflate overall rate constants, $k_{o b s}$, were measured by g.l.c. analysis of alkylation product in the presence of an internal standard. With the other electrophiles, alkalimetric titration of the remaining enolate was used. The C/O ratios were determined by g.l.c. analysis. In each case, good second-order plots were obtained at least up to 50% of the reaction.
constants, the sequence is: $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}=c a . \mathrm{FSO}_{3}-\gg \mathrm{I}^{-}>$ $\mathrm{EtSO}_{4}^{-}>\mathrm{Br}^{-}>\mathrm{TsO}^{-}$.

The orientation of the attack mainly depends on the 'hardness' or 'softness' ${ }^{2}$ of the leaving group atom linked to carbon. 'Soft' leaving groups ($\mathrm{X}=\mathrm{Br}, \mathrm{I}$) lead to almost exclusive C -alkylation, whereas carbon-oxygen cleavage in the case of 'hard' leaving groups ($\mathrm{X}=\mathrm{OSO}_{2} \mathrm{R}$) leads to substantial O-alkylation.

In the homogeneous series of hard sulphate and sulphonates, electrophilic reactivity (cf. $\mathrm{FSO}_{3}{ }^{-}, \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$compared to $\mathrm{TsO}^{-}, \mathrm{EtSO}_{4}^{-}$) has little effect on the orientation of the reaction: for instance, while $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Et}$ strikingly reacts
4×10^{4} times faster than $\mathrm{SO}_{4} \mathrm{Et}_{2}$ and 10^{6} times faster than TsOEt, the percentage of O-ethylation changes only slightly from $21 \%(\mathrm{C} / \mathrm{O}=3.7)$ to $17 \%(\mathrm{C} / \mathrm{O}=4.8)$ and $13 \% ~(C / O=6.6$).

Thus, despite a great difference in rates, alkyl triflates and tosylates seem to react by very similar mechanisms, both in alkylation and in solvolysis reactions. ${ }^{6}$

We thank Dr. R. W. Alder (University of Bristol) for the detailed procedure for the preparation of $\mathrm{FSO}_{3} \mathrm{Et}$.
(Received, 27th February 1974; Com. 249.)
${ }^{1}$ W. J. Le Noble, Synthesis, 1970, 1, 1.
${ }^{2}$ R. G. Pearson and J. Songstad, J. Org. Chem., 1967, 32, 2899; J. Amer. Chem. Soc., 1967, 89, 1827.
${ }^{3}$ D. G. Wigfield, Canad. J. Chem., 1970, 48, 2120.

- G. J. Heiszwolf and H. Kloosterziel, Rec. Trav. chim., 1970, 89, 1153.
${ }^{5}$ M. G. Ahmed, R. W. Alder, G. H. James, M. L. Sinnott, and M. C. Whiting, Chem. Comm., 1968, 1533; T. M. Su, W. F. Sliwinski, and P. von R. Schleyer, J. Amer. Chem. Soc., 1969, 91, 5386.
${ }^{6}$ A Streitwieser, Jr., C. L. Wilkins, and E. Kielhmann, J. Amer. Chem. Soc., 1968, 90, 1598; G. A. Dafforn and A. Streitwieser, Jr., Tetrahedron Letters, 1970, 3159; J. G. Traynham and S. D. Elakovich, ibid., 1973, 155.

