Alkylation of the Sodium Enolate of Ethyl Acetoacetate in Dimethoxyethane. Leaving Groups Effect on Rate and Orientation

By PIERRE SARTHOU, FRANÇOIS GUIBÉ, and GEORGES BRAM*

(Laboratoire de Chimie Organique Biologique, † Université de Paris-Sud, Centre d'Orsay, bât. 420, 91405 Orsay, France)

Summary There is no evident relationship between rate and the ratio of C- to O-alkylation products in the reaction of the sodium enolate of ethyl acetoacetate with EtI, EtBr, TsOEt, FSO₃Et, and CF₃SO₃Et in dimethoxyethane.

THE effect of the leaving group of the electrophile in alkylation reactions of ambident nucleophiles, such as enolate anions, is well known.¹ Several explanations have been proposed; some involve 'hardness' or 'softness' of the

leaving group (HSAB theory),² and others exothermicity of the reaction³ or electrophilicity of the alkylating agent.⁴

We have studied the kinetics and sites of alkylation of ethyl acetoacetate sodium enolate by a series of ethylating electrophiles, EtX, of very different reactivities, *e.g.* ethyl fluorosulphonate ('magic ethyl') and ethyl trifluoromethanesulphonate ('ethyl triflate') which are known to be very reactive.^{5,6}

			IABL	E		
	I-	Br-	TsO-	EtSO-	FSO-	CF _s SO-
C/O 10 ⁵ X koba ⁸	$>100 \\ 500$	60 8	6·6 1·3	$4 \cdot 8_4$	3.5_{8} 6.1×10^{5}	3.7_{3} 17.8×10^{5}
$10^{5} \times k_{c}^{a}$	500	7.9	1.1	33	4.8×10^{5}	14×10^{5}
$10^5 \times k_0$	$<\!5$	0.1	0.2	7	$1{\cdot}3 imes10^{5}$	$3.8 imes10^{5}$

^a l mol⁻¹ min⁻¹; T = 0 °C; [enolate] = 5 × 10⁻²M.

The results[‡] (Table) show no evident relationship between rate and orientation of the reaction: for ratio of C- to O-attack, $k_{\rm C}/k_0$, the sequence is: $I^- > Br^- >> TsO^- >$ EtSO₄⁻ > CF₃SO₃⁻ = ca. FSO₃⁻, but for the overall rate

† Equipe de Recherche Associée au C.N.R.S. nº 318.

 \ddagger In the case of fluorosulphonate and triflate overall rate constants, k_{obs} , were measured by g.l.c. analysis of alkylation product in the presence of an internal standard. With the other electrophiles, alkalimetric titration of the remaining enolate was used. The C/O ratios were determined by g.l.c. analysis. In each case, good second-order plots were obtained at least up to 50% of the reaction.

constants, the sequence is: $CF_3SO_3^- = ca$. $FSO_3^- >> I^- >$ $EtSO_4 > Br > TsO$.

The orientation of the attack mainly depends on the 'hardness' or 'softness'² of the leaving group atom linked to carbon. 'Soft' leaving groups (X = Br,I) lead to almost exclusive C-alkylation, whereas carbon-oxygen cleavage in the case of 'hard' leaving groups $(X = OSO_2R)$ leads to substantial O-alkylation.

In the homogeneous series of hard sulphate and sulphonates, electrophilic reactivity (cf. FSO₃⁻, CF₃SO₃⁻ compared to TsO⁻, $EtSO_4^{-}$) has little effect on the orientation of the reaction: for instance, while CF₃SO₃Et strikingly reacts

 4×10^4 times faster than SO₄Et₂ and 10⁶ times faster than TsOEt, the percentage of O-ethylation changes only slightly from 21% (C/O = 3.7) to 17% (C/O = 4.8) and 13% (C/O = 6.6).

Thus, despite a great difference in rates, alkyl triflates and tosylates seem to react by very similar mechanisms, both in alkylation and in solvolysis reactions.⁶

We thank Dr. R. W. Alder (University of Bristol) for the detailed procedure for the preparation of FSO₃Et.

(Received, 27th February 1974; Com. 249.)

¹ W. J. Le Noble, Synthesis, 1970, 1, 1.

² R. G. Pearson and J. Songstad, J. Org. Chem., 1967, 32, 2899; J. Amer. Chem. Soc., 1967, 89, 1827.

⁹ D. G. Wigfield, Canad. J. Chem., 1970, 48, 2120.
⁴ G. J. Heiszwolf and H. Kloosterziel, Rec. Trav. chim., 1970, 89, 1153.

⁵ M. G. Ahmed, R. W. Alder, G. H. James, M. L. Sinnott, and M. C. Whiting, Chem. Comm., 1968, 1533; T. M. Su, W. F. Sliwinski,

and P. von R. Schleyer, J. Amer. Chem. Soc., 1969, 91, 5386. ⁶ A Streitwieser, Jr., C. L. Wilkins, and E. Kielhmann, J. Amer. Chem. Soc., 1968, 90, 1598; G. A. Dafforn and A. Streitwieser, Jr., Tetrahedron Letters, 1970, 3159; J. G. Traynham and S. D. Elakovich, *ibid.*, 1973, 155.