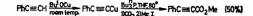
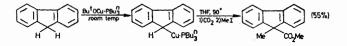
## Carbon Dioxide Insertion into Organocopper and Organosilver Compounds

By TETSUO TSUDA, KAZUO UEDA, and TAKEO SAEGUSA\*


(Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan)

Summary Carbon dioxide insertions into organocopper and organosilver compounds occur in the presence of  $\sigma$ -donor ligands such as  $\operatorname{Bun}_{3}P$  and  $\operatorname{But}NC$  which increase the carbanionic reactivity of the organometallics.


CARBON DIOXIDE is known to react with transition metal compounds either with complex formation or  $CO_2$  insertion. However, examples of  $CO_2$  insertion into a transition metalcarbon bond are limited<sup>1</sup> and examination of the factors affecting the  $CO_2$  insertion is important. We now report that when organocopper and organosilver are co-ordinated with a trialkylphosphine or isonitrile ligand with a high  $\sigma$ -donor strength they easily undergo  $CO_2$  insertion into the metal-carbon bond.

The organocopper and organosilver compounds were prepared using  $Bu^{t}OCu^{2}$  and  $Bu^{t}OAg^{3}$  as metallation agents. The products were isolated and  $CO_{2}$  insertion carried out in the presence of an equimolar amount of  $Bu^{n}_{3}P$  in THF. (The fluorenylcopper complexes were not

isolated before  $CO_2$  insertion). These reactions are the first examples of  $CO_2$  insertion into organocopper and organosilver compounds except for fluorinated organometallics.<sup>4</sup>



 $PhC = CH \xrightarrow{Bu1} OAq PhC = CAg \xrightarrow{Bu1} PhC = PhC = PhC = CCO_2Me (70\%)$ 



The effect of the  $\sigma$ -donor ligands on CO<sub>2</sub> insertion is shown in the Table. Bu<sup>n</sup><sub>3</sub>P, Bu<sup>t</sup>NC, and (MeO)<sub>3</sub>P solubilize copper and silver phenylacetylides in THF by dissociating their polymeric forms.<sup>5</sup> (MeO)<sub>3</sub>P and pyridine

| TABLE.                         | Ligand | effect upon | CO <sub>2</sub> insertion. | sertion. Yields of the carboxylated products |                | cts (%)   |
|--------------------------------|--------|-------------|----------------------------|----------------------------------------------|----------------|-----------|
|                                |        | Bu¹₃P       | Bu <sup>t</sup> N          | C (MeO) <sub>3</sub> P                       | Pyridine       | No ligand |
| Fluorenyl copper<br>PhC == CCu |        |             | trace<br>71                | trace<br>4                                   | trace<br>trace | 0<br>0    |
| PhC≡CAg                        |        | 70          | 65                         | trace                                        | 0              | 0         |

Conditions; Bu<sup>4</sup>OCu ( $\sim 0.5 \text{ mM}$ ): fluorene: ligand: MeI = 1:1:5:1:3; metal acetylide ( $\sim 0.3 \text{ mM}$ ): ligand: MeI = 1:1:3.

(in which copper phenylacetylide is partly soluble) were not effective for CO<sub>2</sub> insertion. The effects of these four ligands may be explained in terms of their different  $\sigma$ -donor strengths;  $Bu^{n}P$  and  $Bu^{t}NC$  with higher  $\sigma$ -donor strengths increase the carbanionic reactivity of the alkynyl group to allow the CO<sub>2</sub> insertion. The weaker  $\sigma$ -donor strength of (MeO)<sub>3</sub>P has been demonstrated by the n.m.r. shifts of the Bu<sup>t</sup>O group in  $Bu^tOCu \cdot PR_3$  complexes,<sup>6</sup>  $Bu^tOCu \cdot PBun_3$  $(\tau \ 8.53)$ , Bu<sup>t</sup>OCu·PEt<sub>3</sub>  $(\tau \ 8.47)$  and Bu<sup>t</sup>OCu·P(OMe)<sub>3</sub>  $(\tau 8.38).$ 

In fluorene-Bu<sup>t</sup>OCu-Bu<sup>t</sup>NC, CO<sub>2</sub> insertion did not take place. Instead, Bu<sup>t</sup>NC was inserted into the coppercarbon bond of a fluorenylcopper-isonitrile complex.7 In fluorene-Bu<sup>t</sup>OCu-pyridine, CO<sub>2</sub> insertion was not observed, and the formation of t-butyl alcohol (98%) and metallic copper (77%) suggest the quantitative formation of a fluorenylcopper-pyridine complex which decomposes rapidly without  $CO_2$  insertion. The fluorenylcopper-P(OMe)<sub>3</sub> complex did not give the carboxylated product. For CO<sub>2</sub> insertion into the fluorenylcopper,  $Bu_{3}^{n}P$  was the most effective ligand.

(Received, 28th December 1973; Com. 1723.)

<sup>1</sup> I. S. Kolomnikov, T. S. Lobeeva, V. V. Gorbachevskaya, G. G. Aleksandrov, Yu. T. Struckhov, and M. E. Vol'pin, Chem. Comm., 1971, 972; U. Zucchini, E. Albizzati, and U. Giannini, J. Organometallic Chem., 1971, 26, 357.
<sup>a</sup> T. Tsuda, T. Hashimoto, and T. Saegusa, J. Amer. Chem. Soc., 1972, 94, 658.
<sup>a</sup> T. Tsuda, O. Imai, T. Nakatsuka, and T. Saegusa, unpublished result.

p. 277.
<sup>6</sup> T. Tsuda, T. Hashimoto, and T. Saegusa, unpublished result.
<sup>7</sup> T. Saegusa, Y. Ito, and S. Tomita, J. Amer. Chem. Soc., 1971, 93, 5656.