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Syntheses and Equilibria of Fused Bicyclic Methylenecyclopropanes

By Anprew S. KENDE* and EDGAR E. RiEcKE
(Department of Chemistry, University of Rochester, Rochester, New York 14627)

Summary Isomeric bicyclic methylenecyclopropanes, ob-
tained from carbenoid ring contraction of bicyclic cyclo-
butanones, exhibit extraordinarily clean thermal equi-
libria which is entropy-controlled near the boundaries of
Bredt’s rule.

REcCENT work has highlighted the limits of stability for
methylenecyclopropanes fused within a bicyclic system.
It is clear from the studies of Berson’s group that the
bicyclopentane (1), not isolable under normal conditions,
undergoes spontaneous dimerization via a trimethylene-
methane intermediate which can be detected by CIDNP.!
Kobrich has likewise noted that its bicyclohexene counter-
part (2) is only briefly stable in solution.? We report the
preparations of five new unsubstituted hydrocarbons of
this series, including the remarkably stable bicyclohexane
(3), and to comment on a hitherto unspecified factor con-~
trolling their intramolecular isomerisation equilibria.

Our general synthesis of fused methylenecyclopropanes
employs carbenoid ring contraction of bicyclic cyclo-
butanone toluenesulphonylhydrazones, themselves avail-
able via 242 addition of dichloroketen to olefins. Thus,
addition of dichloroketen® to cyclohexene gave 399, of
adduct (4) (b.p. 60° at 0-1 mmHg) accompanied by a 5%,
yield of an unidentified C;¢H,,CLO, byproduct (b.p. 110° at
0-1 mm Hg). Dehalogenation (Zn-AcOH) of (4) at room
temperature for 24 h gave exclusively the cyclobutanone

(5) (b.p. 81° at 25 mm Hg), characterized as the toluene-
sulphonylhydrazone (6), m.p. 103—105°.1
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{4) R=Cl; X=0
{5) R=H; X=0
6) R=H; X=NNHSOZC7H7
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1 All new compounds gave satisfactory analytical data or mass spectra.
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Pyrolysis of the dry lithium salt of (6) at 120—180° and
0-1 mm Hg produced ca. 509, of a 2:0:1-0 mixture of
methylenecyclopropanes identified as (7a) and (7b),
respectively, by mass and n.m.r. spectroscopy, and by
di-imide reduction to the corresponding known CgH,,
bicyclic hydrocarbons.4

A parallel reaction sequence starting from cycloheptene
produced a 1-0: 1-1 mixture of the methylenecyclopropanes
(8a) and (8b), readily differentiated by n.m.r. spectroscopy.j
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the Table, differed markedly from the kinetic ratios obtained
from the tosylhydrazone pyrolyses, suggesting that migra-
tion of the more substituted o-bond is preferred in the early
transition states of these exothermic carbenoid rearrange-
ments.®

The parallel between the strain in a system such as (7a)
and that of an anti-Bredt” bridgehead bicyclo[4,1,1]octene
has been suggested.® It is, therefore, noteworthy that the
preference of (7b) over (7a) at equilibrium does not arise

TaBLE®
Starting k x 10° AH? AS? AH° AS®
isomer T/°C (+£a)/s (kcal/mol) (cal/deg/mol) K(b/a) (kcal/mol) (cal/deg/mol)
(7a) 180-0 10-4 4 0-1 35-2 4 0-5 015+ 1 13-37 2-97 11-69
197-1 44-8 4 05 15-07
(7b) 180-0 0-779 + 0-007 322 405 11:65 + 1
197-1 2:94 + 0-03
(8a) 231-2 4-07 + 0-04 41-7 4+ 0-6 2:94 4+ 1 0-6426 258 422
245-9 13-6 4- 0-1 0-6641
(8b) 231-2 6-33 4 0-06 40-6 + 0-7 161 -1
245-9 20-5 4 0-2

8 Kinetic pyrolyses were carried out in sealed Pyrex tubes using hexane as solvent and decane as a g.l.c. internal standard, and were

followed by g.l.c.

at intervals up to a ca. 50 % conversion toward equilibrium concentrations.
taken at ca. 99-8 % conversions toward equilibrium concentrations.

First-order kinetics were obeyed in all equilibria. Each rate constant was determined from five samplings taken

Equilibrium constants were determined from samplings
The ranges for AH* and AS* are maximum errors calculated

from the deviations in rate constants, as determined by a linear regression analysis program.

In a sequence starting with cyclopentene, on the other hand,
only the methylenecyclopropane (3) could be detected [6 5-18
(2H, s) and 1-67 (8H, m)] along with bicycloheptene (9)
[8 5:72 (2H, s), 310 (2H, d, J 6 Hz), and 1-48 (6H, m)}5in a
2:8:1-0 ratio.

In the case of (7) and (8) a very clean thermal equilibrium
between the isomers could be established, whereas (3) gave
neither equilibrium isomers nor dimers up to 231° [¢, (231°)
7-7h]. Equilibrium ratios (7b/7a) and (8b/8a), shown in

1 (8a) 8573 (1H, m) and 2-2—0-5 (13H, m) ; (8b) 5 5-50 (0-82H, 5), 5-18 (1-18H,s), and 2-8—1.0 (12H, m).

from enthalpy effects associated with Baeyer strain® or
torsional effects. It arises exclusively from the more
negative entropy of the highly rigid isomer (7a) (AS° =
11-69 cal/deg/mol). Presumably this phenomenon plays
a controlling role in the reactions of more conventional
systems at the boundaries of Bredt’s rule.

(Received, 17th October 1973; Com. 1429.)

cis- and frans-Cyclopropane

ring junctions are distinguished by n.m.r. spectroscopy (viz. 8 5:50 and 5-18) but the isomers were not separated during purification.
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