Stereochemistry of C-1 Hydrogen Exchange in the Interconversion of trans,transand cis,trans-Farnesols by Soluble Enzymes from Tissue Cultures of Andrographis paniculata

By Karl H. Overton* and Frank M. Roberts (Plant Tissue Culture Unit, Department of Chemistry, The University of Glasgow, Glasgow G12 8QQ)

Summary When a cell-free system from A. paniculata tissue cultures isomerises trans,trans-farnesol (tt-F) to cis,trans-farnesol (ct-F), the 1-pro-R hydrogen of tt-F is retained and the 1-pro-S hydrogen lost; by contrast, conversion of ct-F into tt-F proceeds with retention of the 1-pro-S and loss of the 1-pro-R hydrogen of ct-F.

We have previously shown¹ that a cell-free system from Andrographis paniculata tissue cultures transforms tt-F into ct-F with loss of one diastereotopic hydrogen from C-1. We now report on the stereochemistry of this loss in both the tt-F to ct-F and ct-F to tt-F conversions.

The farnesols (1R)- $[1-^3H_1]tt$ -F and (1R)- $[1-^3H_1]ct$ -F were obtained from commercial farnesol (tt-F:ct-F=2:1) by

exchange in T₂O with horse liver ADH–NAD+–NADH–diaphorase according to the method of Simon² and separation of the isomers by multiple preparative t.l.c. Compounds (1S)-[1-³H₁)tt-F and (1S)-[1-³H₁]ct-F were obtained isotopically pure from [1-³H₂]ct-F and [1-³H₂]tt-F respectively, by the same method but using H₂O; LADH mediates isomerisation as well as exchange and proceeding from the other geometrical isomer ensures that the product cannot be contaminated with di-tritiated molecules that have failed to undergo exchange. Admixture of each tritiated specimen with the corresponding [4,8,12-¹⁴C₃]farnesol, biosynthesised by the cell-free system from [2-¹⁴C]mevalonate, and incubation with the enzyme system led to the results recorded in the Table.

TABLE

	3H/14C	% 3H retained		3H/14C	% ³ H retained
$(1R)$ - $[1-^3H]$ - + $[4,8,12-^{14}C_3]tt$ -F	11·22b		(1S)-[1-8H ₁]- + [4,8,12-14C ₈]-tt-F	6.92ь	
tt-F-OAca	10.64	95	<i>tt</i> -F-OAc	6.39	92
tt-F-OCH ₂ SiMe ₃ ⁸	10.68	95	tt-F-OTCH ₂ SiMe ₃	6.26	90
ct-F-OAc	10.50	94	<i>ct</i> -F-OAc	0.18	3
ct-F-OCH ₂ SiMe ₃	10.74	96	ct-F-OCH ₂ SiMe ₃	0.23	3
$(1R)$ - $[1-^{8}H_{1}]$ - + $[4,8,12-^{14}C_{3}]$ - ct -F	4·51 b		$(1S)$ - $[1^{-8}H_1]$ - + $[4,8,12^{-14}C_3]$ -ct-F	6·30b	
tt-F-OAc	0.15	4	tt-F-OAc	6.55	104
tt-F-OCH ₂ SiMe ₃	0.23	5	tt-F-OCH ₂ SMe ₂	6.05	96
<i>ct</i> -F-OAc	4.18	92	ct-F-OAc	6.14	97
ct-F-OCH ₂ SiMe ₃	$4 \cdot 22$	94	ct-F-OCH ₂ SiMe ₃	6.20	98

a Alcohols were converted into acetates and trimethylsilyl ethers for determination of radioactivity. b Average value for ROH, ROAc, and ROCH₂SiMe₃.

In a complementary experiment, the ct-F obtained from (1R)-[1-3H1]tt-F (tritium label retained), was exposed to LADH-diaphorase-NAD+-NADH. It retained its tritium label under these conditions also, as did the derived hexahydro-compound, suggesting that the label was in the nonexchangeable pro-S position, in accordance with the results of ct-F to tt-F exchange shown in the Table. However, the configurations of the monotritiated cis-farnesols, and hence

the conclusions based on them, depend on the unproven assumption that LADH exchanges the 1-pro-R hydrogen of cis-allylic alcohols, as it has been shown3 to exchange the 1-pro-R hydrogen of trans-allylic alcohols. This critical point is now receiving our attention.

We thank the S.R.C. for financial support.

(Received, 1st April 1974; Com. 361.)

¹ K. H. Overton and F. M. Roberts, J.C.S. Chem. Comm., 1973, 378.

² H. Gunther, M. A. Alizade, M. Kellner, F. Biller, and H. Simon, Z. Naturforsch., 1973, 28C, 241; H. Gunther, F. Biller, M. Kellner, and H. Simon Angew. Chem. Internat. Edn., 1973, 12, 146.

⁸ D. Arigoni and E. L. Eliel in 'Topics in Stereochemistry,' vol. 4, ed. E. L. Eliel and N. A. Allinger, Wiley-Interscience, 1969, pp. 167, 217.